TY - JOUR A1 - Turdumamatov, Samat A1 - Belda, Aljoscha A1 - Heuermann, Holger T1 - Shaping a decoupled atmospheric pressure microwave plasma with antenna structures, Maxwell’s equations, and boundary conditions JF - IEEE Transactions on Plasma Science N2 - This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell’s laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential applications across various fields. Implemented in an E01 circular cavity resonator, the proposed method involves the use of an impedance and field matching device with a coaxial connector and a specially optimized monopole antenna. This setup feeds a low-loss cavity resonator, resulting in a high-energy density air plasma with a surface temperature exceeding 3500 o C, achieved with a minimal power input of 80 W. The argon plasma, resembling the shape of a simple monopole antenna with modeled complex dielectric values, offers a more energy-efficient alternative compared to traditional, power-intensive plasma shaping methods. Simulations using a commercial electromagnetic (EM) solver validate the design’s effectiveness, while experimental validation underscores the method’s feasibility and practical implementation. Analyzing various parameters in an argon atmosphere, including hot S -parameters and plasma beam images, the results demonstrate the successful application of this technique, suggesting its potential in coating, furnace technology, fusion, and spectroscopy applications. KW - 3-D printing KW - Furnace KW - Fusion KW - Hot S-parameter KW - Mode converter Y1 - 2024 U6 - https://doi.org/10.1109/TPS.2024.3383589 SN - 0093-3813 (Print) SN - 1939-9375 (Online) IS - Early Access SP - 1 EP - 9 PB - IEEE ER - TY - CHAP A1 - Reke, Michael A1 - Peter, Daniel A1 - Schulte-Tigges, Joschua A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Walter, Thomas A1 - Matheis, Dominik T1 - A Self-Driving Car Architecture in ROS2 T2 - 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa N2 - In this paper we report on an architecture for a self-driving car that is based on ROS2. Self-driving cars have to take decisions based on their sensory input in real-time, providing high reliability with a strong demand in functional safety. In principle, self-driving cars are robots. However, typical robot software, in general, and the previous version of the Robot Operating System (ROS), in particular, does not always meet these requirements. With the successor ROS2 the situation has changed and it might be considered as a solution for automated and autonomous driving. Existing robotic software based on ROS was not ready for safety critical applications like self-driving cars. We propose an architecture for using ROS2 for a self-driving car that enables safe and reliable real-time behaviour, but keeping the advantages of ROS such as a distributed architecture and standardised message types. First experiments with an automated real passenger car at lower and higher speed-levels show that our approach seems feasible for autonomous driving under the necessary real-time conditions. Y1 - 2020 SN - 978-1-7281-4162-6 U6 - https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020 N1 - 2020 International SAUPEC/RobMech/PRASA Conference, 29-31 Jan. 2020, Cape Town, South Africa SP - 1 EP - 6 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Heuermann, Holger A1 - Ibrahim, Irfan T1 - Improvements in the flicker noise reduction technique for osillator designs / Ibrahim, Irfan ; Heuermann, Holger JF - European Microwave Conference, 2009 : EuMC 2009 ; Sept. 29, 2009 - Oct. 1, 2009, Rome, Italy ; part of European Microwave Week (EuMW) / sponsored by EuMA, European Microwave Association ... Endorsed by IEEE Y1 - 2009 SN - 978-1-4244-4748-0 N1 - EuMC 2009 SP - 1215 EP - 1218 PB - IEEE CY - Piscataway, NJ ER - TY - JOUR A1 - Ferrein, Alexander A1 - Schiffer, Stefan A1 - Lakemeyer, Gerhard T1 - Embedding fuzzy controllers in golog / Ferrein, Alexander ; Schiffer, Stefan ; Lakemeyer, Gerhard JF - IEEE International Conference on Fuzzy Systems, 2009. FUZZ-IEEE 2009 Y1 - 2009 SN - 978-1-4244-3596-8 SP - 894 EP - 899 PB - IEEE CY - New York ER - TY - JOUR A1 - Heuermann, Holger A1 - Emmrich, Thomas A1 - Bongartz, Simon T1 - Microwave spark plug to support ignitions with high compression ratios JF - IEEE Transactions on Plasma Science N2 - Upcoming gasoline engines should run with a larger number of fuels beginning from petrol over methanol up to gas by a wide range of compression ratios and a homogeneous charge. In this article, the microwave (MW) spark plug, based on a high-speed frequency hopping system, is introduced as a solution, which can support a nitrogen compression ratio up to 1:39 in a chamber and more. First, an overview of the high-speed frequency hopping MW ignition and operation system as well as the large number of applications are presented. Both gives an understanding of this new base technology for MW plasma generation. Focus of the theoretical part is the explanation of the internal construction of the spark plug, on the achievable of the high voltage generation as well as the high efficiency to hold the plasma. In detail, the development process starting with circuit simulations and ending with the numerical multiphysics field simulations is described. The concept is evaluated with a reference prototype covering the frequency range between 2.40 and 2.48 GHz and working over a large power range from 20 to 200 W. A larger number of different measurements starting by vector hot-S11 measurements and ending by combined working scenarios out of hot temperature, high pressure and charge motion are winding up the article. The limits for the successful pressure tests were given by the pressure chamber. Pressures ranged from 1 to 39 bar and charge motion up to 25 m/s as well as temperatures from 30◦ to 125◦. KW - Automotive application KW - ignition KW - microplasma KW - microwave (MW) plasma KW - plasma jet Y1 - 2022 U6 - https://doi.org/10.1109/TPS.2022.3183690 SN - 1939-9375 IS - Early Access SP - 1 EP - 6 PB - IEEE ER - TY - CHAP A1 - Sildatke, Michael A1 - Karwanni, Hendrik A1 - Kraft, Bodo A1 - Schmidts, Oliver A1 - Zündorf, Albert T1 - Automated Software Quality Monitoring in Research Collaboration Projects T2 - ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops N2 - In collaborative research projects, both researchers and practitioners work together solving business-critical challenges. These projects often deal with ETL processes, in which humans extract information from non-machine-readable documents by hand. AI-based machine learning models can help to solve this problem. Since machine learning approaches are not deterministic, their quality of output may decrease over time. This fact leads to an overall quality loss of the application which embeds machine learning models. Hence, the software qualities in development and production may differ. Machine learning models are black boxes. That makes practitioners skeptical and increases the inhibition threshold for early productive use of research prototypes. Continuous monitoring of software quality in production offers an early response capability on quality loss and encourages the use of machine learning approaches. Furthermore, experts have to ensure that they integrate possible new inputs into the model training as quickly as possible. In this paper, we introduce an architecture pattern with a reference implementation that extends the concept of Metrics Driven Research Collaboration with an automated software quality monitoring in productive use and a possibility to auto-generate new test data coming from processed documents in production. Through automated monitoring of the software quality and auto-generated test data, this approach ensures that the software quality meets and keeps requested thresholds in productive use, even during further continuous deployment and changing input data. Y1 - 2020 U6 - https://doi.org/10.1145/3387940.3391478 N1 - ICSE '20: 42nd International Conference on Software Engineering, Seoul, Republic of Korea, 27 June 2020 - 19 July 2020 SP - 603 EP - 610 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Heuermann, Holger A1 - Sadeghfam, Arash T1 - Enhanced system architecture for rugged wide band data transmission / Sadeghfam, A. ; Heuermann, H. JF - European Radar Conference, 2009 : EuRAD 2009 ; Sept. 30 - Oct. 2 2009, Rome, Italy ; part of the European Microwave Week (EuMW) / sponsored by EuMA, European Microwave Association Y1 - 2009 SN - 978-2-87487-014-9 N1 - Proceedings of the 6th European Radar Conference SP - 347 EP - 350 PB - IEEE CY - Piscataway, NJ ER - TY - JOUR A1 - Bragard, Michael A1 - van Hoek, H. A1 - De Doncker, R. W. T1 - A major design step in IETO concept realization that allows overcurrent protection and pushes limits of switching performance JF - IEEE transactions on power electronics N2 - This paper presents the latest prototype of the integrated emitter turn-off thyristor concept, which potentially ranks among thyristor high-power devices like the gate turn-off thyristor and the integrated gate-commutated thyristor (IGCT). Due to modifications of the external driver stage and mechanical press-pack design optimization, this prototype allows for full device characterization. The turn-off capability was increased to 1600 A with an active silicon area of 823mm2 . This leads to a transient peak power of 672.1kW/cm² . Within this paper, measurements and concept assessment are presented and a comparison to state-of-the-art IGCT devices is provided. Y1 - 2012 U6 - https://doi.org/10.1109/TPEL.2012.2189136 SN - 0885-8993 VL - 27 IS - 9 SP - 4163 EP - 4171 PB - IEEE CY - New York ER - TY - CHAP A1 - Kramer, Pia A1 - Bragard, Michael A1 - Ritz, Thomas A1 - Ferfer, Ute A1 - Schiffers, Tim T1 - Visualizing, Enhancing and Predicting Students’ Success through ECTS Monitoring T2 - 2024 IEEE Global Engineering Education Conference (EDUCON) N2 - This paper serves as an introduction to the ECTS monitoring system and its potential applications in higher education. It also emphasizes the potential for ECTS monitoring to become a proactive system, supporting students by predicting academic success and identifying groups of potential dropouts for tailored support services. The use of the nearest neighbor analysis is suggested for improving data analysis and prediction accuracy. KW - Monitoring KW - Engineering education KW - Data visualization KW - Accuracy KW - Data analysis Y1 - 2024 U6 - https://doi.org/10.1109/EDUCON60312.2024.10578652 SN - 2165-9559 SN - 2165-9567 (eISSN) N1 - 2024 IEEE Global Engineering Education Conference (EDUCON), 08-11 May 2024, Kos Island, Greece PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Eltester, Niklas Sebastian A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - A smart factory setup based on the RoboCup logistics league T2 - 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS) N2 - In this paper we present SMART-FACTORY, a setup for a research and teaching facility in industrial robotics that is based on the RoboCup Logistics League. It is driven by the need for developing and applying solutions for digital production. Digitization receives constantly increasing attention in many areas, especially in industry. The common theme is to make things smart by using intelligent computer technology. Especially in the last decade there have been many attempts to improve existing processes in factories, for example, in production logistics, also with deploying cyber-physical systems. An initiative that explores challenges and opportunities for robots in such a setting is the RoboCup Logistics League. Since its foundation in 2012 it is an international effort for research and education in an intra-warehouse logistics scenario. During seven years of competition a lot of knowledge and experience regarding autonomous robots was gained. This knowledge and experience shall provide the basis for further research in challenges of future production. The focus of our SMART-FACTORY is to create a stimulating environment for research on logistics robotics, for teaching activities in computer science and electrical engineering programmes as well as for industrial users to study and explore the feasibility of future technologies. Building on a very successful history in the RoboCup Logistics League we aim to provide stakeholders with a dedicated facility oriented at their individual needs. Y1 - 2020 U6 - https://doi.org/10.1109/ICPS48405.2020.9274766 N1 - 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), 10-12 June 2020, Tampere, Finland. SP - 297 EP - 302 PB - IEEE CY - New York, NY ER -