TY - CHAP A1 - Kurz, Melanie T1 - Zur Multikausalität von Designentscheidungen - eine Beispielsammlung T2 - Designentscheidungen: über Begründungen im Entwurfsprozess Y1 - 2021 SN - 978-3-89986-353-6 SP - 22 EP - 43 PB - avedition CY - Stuttgart ER - TY - CHAP A1 - Kurz, Melanie T1 - Betrifft Design : von historischen Zukunftsperspektiven zu gegenwärtigen Vergangenheitssehnsüchten T2 - Positionen des Neuen : Zukunft im Design Y1 - 2019 SN - 978-3-89986-301-7 SP - 136 EP - 144 PB - avedition CY - Stuttgart ER - TY - CHAP A1 - Laack, Walter van ED - Ortmanns, Bruno ED - Brauers, Angelika T1 - Nahtoderfahrungen, Sterben und Tod aus der Perspektive von Medizin, Naturwissenschaften und Philosophie T2 - Thanatologie im deutschsprachigen Raum – Interdisziplinäre Perspektiven Y1 - 2023 SN - 978-3-98527-661-5 SP - 129 EP - 139 PB - Rediroma-Verlag ER - TY - CHAP A1 - Dachwald, Bernd ED - Knopf, George K. ED - Otani, Yukitoshi T1 - Light propulsion systems for spacecraft T2 - Optical nano and micro actuator technology Y1 - 2017 SN - 9781315217628 (eBook) SP - 577 EP - 598 PB - CRC Press CY - Boca Raton ER - TY - CHAP A1 - Fateri, Miranda A1 - Gebhardt, Andreas T1 - Introduction to Additive Manufacturing T2 - 3D Printing of Optical Components N2 - Additive manufacturing (AM) works by creating objects layer by layer in a manner similar to a 2D printer with the “printed” layers stacked on top of each other. The layer-wise manufacturing nature of AM enables fabrication of freeform geometries which cannot be fabricated using conventional manufacturing methods as a one part. Depending on how each layer is created and bonded to the adjacent layers, different AM methods have been developed. In this chapter, the basic terms, common materials, and different methods of AM are described, and their potential applications are discussed. KW - Additive manufacturing KW - 3D printing KW - Digital manufacturing KW - Rapid prototyping KW - Rapid manufacturing Y1 - 2020 SN - 978-3-030-58960-8 U6 - http://dx.doi.org/10.1007/978-3-030-58960-8_1 SP - 1 EP - 22 PB - Springer CY - Cham ER - TY - CHAP A1 - Butenweg, Christoph A1 - Holtschoppen, Britta T1 - Seismic design of structures and components in industrial units T2 - Structural Dynamics with Applications in Earthquake and Wind Engineering N2 - Industrial units consist of the primary load-carrying structure and various process engineering components, the latter being by far the most important in financial terms. In addition, supply structures such as free-standing tanks and silos are usually required for each plant to ensure the supply of material and product storage. Thus, for the earthquake-proof design of industrial plants, design and construction rules are required for the primary structures, the secondary structures and the supply structures. Within the framework of these rules, possible interactions of primary and secondary structures must also be taken into account. Importance factors are used in seismic design in order to take into account the usually higher risk potential of an industrial unit compared to conventional building structures. Industrial facilities must be able to withstand seismic actions because of possibly wide-ranging damage consequences in addition to losses due to production standstill and the destruction of valuable equipment. The chapter presents an integrated concept for the seismic design of industrial units based on current seismic standards and the latest research results. Special attention is devoted to the seismic design of steel thin-walled silos and tank structures. KW - Industrial units KW - Seismic design KW - Tanks KW - Silos KW - Components Y1 - 2019 SN - 978-3-662-57550-5 U6 - http://dx.doi.org/10.1007/978-3-662-57550-5_5 SP - 359 EP - 481 PB - Springer CY - Berlin ER - TY - CHAP A1 - Giresini, Linda A1 - Butenweg, Christoph T1 - Earthquake resistant design of structures according to Eurocode 8 T2 - Structural Dynamics with Applications in Earthquake and Wind Engineering N2 - The chapter initially provides a summary of the contents of Eurocode 8, its aim being to offer both to the students and to practising engineers an easy introduction into the calculation and dimensioning procedures of this earthquake code. Specifically, the general rules for earthquake-resistant structures, the definition of design response spectra taking behaviour and importance factors into account, the application of linear and non-linear calculation methods and the structural safety verifications at the serviceability and ultimate limit state are presented. The application of linear and non-linear calculation methods and corresponding seismic design rules is demonstrated on practical examples for reinforced concrete, steel and masonry buildings. Furthermore, the seismic assessment of existing buildings is discussed and illustrated on the example of a typical historical masonry building in Italy. The examples are worked out in detail and each step of the design process, from the preliminary analysis to the final design, is explained in detail. KW - Seismic design KW - Eurocode 8 KW - Design examples KW - Response spectrum KW - Pushover analysis Y1 - 2019 SN - 978-3-662-57550-5 (Online) SN - 978-3-662-57548-2 (Print) U6 - http://dx.doi.org/10.1007/978-3-662-57550-5_4 SP - 197 EP - 358 PB - Springer CY - Berlin ER - TY - CHAP A1 - Gebhardt, Andreas A1 - Hoetter, Jan-Steffen T1 - Rapid Tooling T2 - CIRP Encyclopedia of Production Engineering Y1 - 2019 SN - 978-3-662-53120-4 U6 - http://dx.doi.org/10.1007/978-3-662-53120-4 SP - 39 EP - 52 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Blome, Hans-Joachim T1 - Die Tragweite der physikalischen Kosmologie T2 - Exploring Uncertainty Y1 - 2013 SN - 978-3-658-00897-0 U6 - http://dx.doi.org/10.1007/978-3-658-00897-0_6 SP - 105 EP - 150 PB - Springer Gabler CY - Wiesbaden ER - TY - CHAP A1 - Bozakov, Zdravko A1 - Sander, Volker T1 - OpenFlow: A Perspective for Building Versatile Networks T2 - Network-Embedded Management and Applications Y1 - 2013 SN - 978-1-4419-6769-5 U6 - http://dx.doi.org/10.1007/978-1-4419-6769-5_11 SP - 217 EP - 245 PB - Springer CY - New York, NY ER -