TY - CHAP A1 - Czarnecki, Christian A1 - Fettke, Peter ED - Czarnecki, Christian ED - Fettke, Peter T1 - Robotic process automation : Positioning, structuring, and framing the work T2 - Robotic process automation : Management, technology, applications N2 - Robotic process automation (RPA) has attracted increasing attention in research and practice. This chapter positions, structures, and frames the topic as an introduction to this book. RPA is understood as a broad concept that comprises a variety of concrete solutions. From a management perspective RPA offers an innovative approach for realizing automation potentials, whereas from a technical perspective the implementation based on software products and the impact of artificial intelligence (AI) and machine learning (ML) are relevant. RPA is industry-independent and can be used, for example, in finance, telecommunications, and the public sector. With respect to RPA this chapter discusses definitions, related approaches, a structuring framework, a research framework, and an inside as well as outside architectural view. Furthermore, it provides an overview of the book combined with short summaries of each chapter. KW - Robotic process automation KW - management KW - technology KW - applications KW - research framework Y1 - 2021 SN - 978-3-11-067668-6 (Print) SN - 978-3-11-067669-3 (PDF) SN - 978-3-11-067677-8 (ePub) U6 - http://dx.doi.org/10.1515/9783110676693-202 SP - 3 EP - 24 PB - De Gruyter CY - Oldenbourg ER - TY - CHAP A1 - Pfetsch, Marc E. A1 - Abele, Eberhard A1 - Altherr, Lena A1 - Bölling, Christian A1 - Brötz, Nicolas A1 - Dietrich, Ingo A1 - Gally, Tristan A1 - Geßner, Felix A1 - Groche, Peter A1 - Hoppe, Florian A1 - Kirchner, Eckhard A1 - Kloberdanz, Hermann A1 - Knoll, Maximilian A1 - Kolvenbach, Philip A1 - Kuttich-Meinlschmidt, Anja A1 - Leise, Philipp A1 - Lorenz, Ulf A1 - Matei, Alexander A1 - Molitor, Dirk A. A1 - Niessen, Pia A1 - Pelz, Peter F. A1 - Rexer, Manuel A1 - Schmitt, Andreas A1 - Schmitt, Johann M. A1 - Schulte, Fiona A1 - Ulbrich, Stefan A1 - Weigold, Matthias T1 - Strategies for mastering uncertainty T2 - Mastering uncertainty in mechanical engineering N2 - This chapter describes three general strategies to master uncertainty in technical systems: robustness, flexibility and resilience. It builds on the previous chapters about methods to analyse and identify uncertainty and may rely on the availability of technologies for particular systems, such as active components. Robustness aims for the design of technical systems that are insensitive to anticipated uncertainties. Flexibility increases the ability of a system to work under different situations. Resilience extends this characteristic by requiring a given minimal functional performance, even after disturbances or failure of system components, and it may incorporate recovery. The three strategies are described and discussed in turn. Moreover, they are demonstrated on specific technical systems. Y1 - 2021 SN - 978-3-030-78353-2 U6 - http://dx.doi.org/10.1007/978-3-030-78354-9_6 N1 - Part of the Springer Tracts in Mechanical Engineering book series (STME) SP - 365 EP - 456 PB - Springer CY - Cham ER -