TY - CHAP A1 - Kern, Alexander A1 - Imani Vashiani, Anahita A1 - Timmermanns, Tobias T1 - Threat for human beings due to touch voltages and body currents caused by direct lightning strikes in case of non-isolated lightning protection systems using natural components T2 - 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA) N2 - For typical cases of non-isolated lightning protection systems (LPS) the impulse currents are investigated which may flow through a human body directly touching a structural part of the LPS. Based on a basic LPS model with conventional down-conductors especially the cases of external and internal steel columns and metal façades are considered and compared. Numerical simulations of the line quantities voltages and currents in the time domain are performed with an equivalent circuit of the entire LPS. As a result it can be stated that by increasing the number of conventional down-conductors and external steel columns the threat for a human being can indeed be reduced, but not down to an acceptable limit. In case of internal steel columns used as natural down-conductors the threat can be reduced sufficiently, depending on the low-resistive connection of the steel columns to the lightning equipotential bonding or the earth termination system, resp. If a metal façade is used the threat for human beings touching is usually very low, if the façade is sufficiently interconnected and multiply connected to the lightning equipotential bonding or the earth termination system, resp. KW - Lightning protection system KW - down-conductor KW - steel columns KW - metal façade KW - touch voltage Y1 - 2021 SN - 978-1-6654-2346-5 U6 - https://doi.org/10.1109/ICLPandSIPDA54065.2021.9627465 N1 - 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), 20-26 Sept. 2021, Colombo, Sri Lanka PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Englhard, Markus A1 - Weber, Tobias A1 - Arent, Jan-Christoph T1 - Efficiency enhancement for CFRP-Prepregautoclave manufacturing by means of simulation-assisted loading optimization T2 - Proceedings of SAMPE Europe Conference 2021 N2 - A new method for improved autoclave loading within the restrictive framework of helicopter manufacturing is proposed. It is derived from experimental and numerical studies of the curing process and aims at optimizing tooling positions in the autoclave for fast and homogeneous heat-up. The mold positioning is based on two sets of information. The thermal properties of the molds, which can be determined via semi-empirical thermal simulation. The second information is a previously determined distribution of heat transfer coefficients inside the autoclave. Finally, an experimental proof of concept is performed to show a cycle time reduction of up to 31% using the proposed methodology. Y1 - 2021 N1 - SAMPE Europe Conference 2021, Baden/Zürich, Schweiz, 29. bis 30. September 2021 ER - TY - CHAP A1 - Nikolovski, Gjorgji A1 - Reke, Michael A1 - Elsen, Ingo A1 - Schiffer, Stefan T1 - Machine learning based 3D object detection for navigation in unstructured environments T2 - 2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops) N2 - In this paper we investigate the use of deep neural networks for 3D object detection in uncommon, unstructured environments such as in an open-pit mine. While neural nets are frequently used for object detection in regular autonomous driving applications, more unusual driving scenarios aside street traffic pose additional challenges. For one, the collection of appropriate data sets to train the networks is an issue. For another, testing the performance of trained networks often requires tailored integration with the particular domain as well. While there exist different solutions for these problems in regular autonomous driving, there are only very few approaches that work for special domains just as well. We address both the challenges above in this work. First, we discuss two possible ways of acquiring data for training and evaluation. That is, we evaluate a semi-automated annotation of recorded LIDAR data and we examine synthetic data generation. Using these datasets we train and test different deep neural network for the task of object detection. Second, we propose a possible integration of a ROS2 detector module for an autonomous driving platform. Finally, we present the performance of three state-of-the-art deep neural networks in the domain of 3D object detection on a synthetic dataset and a smaller one containing a characteristic object from an open-pit mine. KW - 3D object detection KW - LiDAR KW - autonomous driving KW - Deep learning KW - Three-dimensional displays Y1 - 2021 SN - 978-1-6654-7921-9 U6 - https://doi.org/10.1109/IVWorkshops54471.2021.9669218 N1 - 2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops), 11-17 July 2021, Nagoya, Japan. SP - 236 EP - 242 PB - IEEE ER - TY - CHAP A1 - Ritschel, Konstantin A1 - Stenzel, Adina A1 - Czarnecki, Christian A1 - Hong, Chin-Gi ED - Gesellschaft für Informatik e.V. (GI), T1 - Realizing robotic process automation potentials: an architectural perspective on a real-life implementation case T2 - GI Edition Proceedings Band 314 "INFORMATIK 2021" Computer Science & Sustainability N2 - The initial idea of Robotic Process Automation (RPA) is the automation of business processes through a simple emulation of user input and output by software robots. Hence, it can be assumed that no changes of the used software systems and existing Enterprise Architecture (EA) is required. In this short, practical paper we discuss this assumption based on a real-life implementation project. We show that a successful RPA implementation might require architectural work during analysis, implementation, and migration. As practical paper we focus on exemplary lessons-learned and new questions related to RPA and EA. KW - Robotic Process Automation KW - Enterprise Architecture KW - Implementation Case Y1 - 2021 SN - 9783885797081 U6 - https://doi.org/10.18420/informatik2021-108 SN - 1617-5468 N1 - INFORMATIK 2021 – 51. Jahrestagung der Gesellschaft für Informatik, 27. September – 01. Oktober 2021 / Virtuell SP - 1303 EP - 1311 PB - Köllen CY - Bonn ER - TY - CHAP A1 - Mertens, Alexander A1 - Pütz, Sebastian A1 - Brauner, Philipp A1 - Brillowski, Florian Sascha A1 - Buczak, Nadine A1 - Dammers, Hannah A1 - van Dyck, Marc A1 - Kong, Iris A1 - Königs, Peter A1 - Kortomeikel, Frauke Carole A1 - Rodemann, Niklas A1 - Schaar, Anne Kathrin A1 - Steuer-Dankert, Linda A1 - Wlecke, Shari A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Piller, Frank Thomas A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena T1 - Human digital shadow: Data-based modeling of users and usage in the internet of production T2 - 14th Conference Human System Interaction Conference Proceedings N2 - Digital Shadows as the aggregation, linkage and abstraction of data relating to physical objects are a central vision for the future of production. However, the majority of current research takes a technocentric approach, in which the human actors in production play a minor role. Here, the authors present an alternative anthropocentric perspective that highlights the potential and main challenges of extending the concept of Digital Shadows to humans. Following future research methodology, three prospections that illustrate use cases for Human Digital Shadows across organizational and hierarchical levels are developed: human-robot collaboration for manual work, decision support and work organization, as well as human resource management. Potentials and challenges are identified using separate SWOT analyses for the three prospections and common themes are emphasized in a concluding discussion. KW - digital shadow KW - cyber physical production system KW - user & usage KW - internet of production Y1 - 2021 U6 - https://doi.org/10.1109/HSI52170.2021.9538729 N1 - 14th International Conference on Human System Interaction : 8-10 July 2021. Gdańsk, Poland SP - 1 EP - 8 PB - IEEE ER - TY - CHAP A1 - Schoutetens, Frederic A1 - Dachwald, Bernd A1 - Heiligers, Jeannette T1 - Optimisation of photon-sail trajectories in the alpha-centauri system using evolutionary neurocontrol T2 - 8th ICATT 2021 N2 - With the increased interest for interstellar exploration after the discovery of exoplanets and the proposal by Breakthrough Starshot, this paper investigates the optimisation of photon-sail trajectories in Alpha Centauri. The prime objective is to find the optimal steering strategy for a photonic sail to get captured around one of the stars after a minimum-time transfer from Earth. By extending the idea of the Breakthrough Starshot project with a deceleration phase upon arrival, the mission’s scientific yield will be increased. As a secondary objective, transfer trajectories between the stars and orbit-raising manoeuvres to explore the habitable zones of the stars are investigated. All trajectories are optimised for minimum time of flight using the trajectory optimisation software InTrance. Depending on the sail technology, interstellar travel times of 77.6-18,790 years can be achieved, which presents an average improvement of 30% with respect to previous work. Still, significant technological development is required to reach and be captured in the Alpha-Centauri system in less than a century. Therefore, a fly-through mission arguably remains the only option for a first exploratory mission to Alpha Centauri, but the enticing results obtained in this work provide perspective for future long-residence missions to our closest neighbouring star system. Y1 - 2021 N1 - 8th ICATT (International Conference on Astrodynamics Tools and Techniques), 23 - 25 June 2021, Virtual SP - 1 EP - 15 ER - TY - CHAP A1 - Schmidt, Thomas A1 - Kasch, Susanne A1 - Eichler, Fabian A1 - Thurn, Laura T1 - Process strategies on laser-based melting of glass powder T2 - LiM 2021 proceedings N2 - This paper presents the laser-based powder bed fusion (L-PBF) using various glass powders (borosilicate and quartz glass). Compared to metals, these require adapted process strategies. First, the glass powders were characterized with regard to their material properties and their processability in the powder bed. This was followed by investigations of the melting behavior of the glass powders with different laser wavelengths (10.6 µm, 1070 nm). In particular, the experimental setup of a CO2 laser was adapted for the processing of glass powder. An experimental setup with integrated coaxial temperature measurement/control and an inductively heatable build platform was created. This allowed the L-PBF process to be carried out at the transformation temperature of the glasses. Furthermore, the component’s material quality was analyzed on three-dimensional test specimen with regard to porosity, roughness, density and geometrical accuracy in order to evaluate the developed L-PBF parameters and to open up possible applications. KW - 3D-printing KW - glass KW - additive manufactureing KW - laser based powder fusion Y1 - 2021 N1 - LiM (Lasers in Manufacturing) 2021, June 21 - 24, 2021, online ER - TY - CHAP A1 - Kroniger, Daniel A1 - Horikawa, Atsushi A1 - Funke, Harald A1 - Pfäffle, Franziska T1 - Numerical investigation of micromix hydrogen flames at different combustor pressure levels T2 - The Proceedings of the International Conference on Power Engineering (ICOPE) N2 - This study investigates the influence of pressure on the temperature distribution of the micromix (MMX) hydrogen flame and the NOx emissions. A steady computational fluid dynamic (CFD) analysis is performed by simulating a reactive flow with a detailed chemical reaction model. The numerical analysis is validated based on experimental investigations. A quantitative correlation is parametrized based on the numerical results. We find, that the flame initiation point shifts with increasing pressure from anchoring behind a downstream located bluff body towards anchoring upstream at the hydrogen jet. The numerical NOx emissions trend regarding to a variation of pressure is in good agreement with the experimental results. The pressure has an impact on both, the residence time within the maximum temperature region and on the peak temperature itself. In conclusion, the numerical model proved to be adequate for future prototype design exploration studies targeting on improving the operating range. KW - Gas turbine combustion KW - Hydrogen KW - NOx emissions KW - Flame temperature KW - Flame residence time Y1 - 2021 U6 - https://doi.org/10.1299/jsmeicope.2021.15.2021-0237 N1 - International Conference on Power Engineering 2021 (ICOPE-2021). October 17 - 21, 2021. Kobe, Japan (Online) ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Okada, Kunio A1 - Yamaguchi, Masato A1 - Aoki, Shigeki A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine T2 - Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions N2 - Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat. KW - industrial gas turbine KW - combustor development KW - engine demonstration KW - fuels KW - hydrogen Y1 - 2021 U6 - https://doi.org/10.1115/GT2021-59666 N1 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. June 7–11, 2021. Virtual, Online. Paper No: GT2021-59666, V03BT04A014 ER - TY - CHAP A1 - Kroniger, Daniel A1 - Horikawa, Atsushi A1 - Funke, Harald A1 - Pfäffle, Franziska A1 - Kishimoto, Tsuyoshi A1 - Okada, Koichi T1 - Experimental and numerical investigation on the effect of pressure on micromix hydrogen combustion T2 - Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3A: Combustion, Fuels, and Emissions N2 - The micromix (MMX) combustion concept is a DLN gas turbine combustion technology designed for high hydrogen content fuels. Multiple non-premixed miniaturized flames based on jet in cross-flow (JICF) are inherently safe against flashback and ensure a stable operation in various operative conditions. The objective of this paper is to investigate the influence of pressure on the micromix flame with focus on the flame initiation point and the NOx emissions. A numerical model based on a steady RANS approach and the Complex Chemistry model with relevant reactions of the GRI 3.0 mechanism is used to predict the reactive flow and NOx emissions at various pressure conditions. Regarding the turbulence-chemical interaction, the Laminar Flame Concept (LFC) and the Eddy Dissipation Concept (EDC) are compared. The numerical results are validated against experimental results that have been acquired at a high pressure test facility for industrial can-type gas turbine combustors with regard to flame initiation and NOx emissions. The numerical approach is adequate to predict the flame initiation point and NOx emission trends. Interestingly, the flame shifts its initiation point during the pressure increase in upstream direction, whereby the flame attachment shifts from anchoring behind a downstream located bluff body towards anchoring directly at the hydrogen jet. The LFC predicts this change and the NOx emissions more accurately than the EDC. The resulting NOx correlation regarding the pressure is similar to a non-premixed type combustion configuration. KW - NOx emissions KW - hydrogen KW - combustor KW - gas turbine Y1 - 2021 U6 - https://doi.org/10.1115/GT2021-58926 N1 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, June 7–11, 2021, Virtual, Online. Paper No: GT2021-58926, V03AT04A025 PB - ASME CY - New York, NY ER -