TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Biele, Jens A1 - Boden, Ralf A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Herčík, David A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Koch, Aaron D A1 - Koncz, Alexander A1 - Krause, Christian A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - Maiwald, Volker A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Tardivel, Simon A1 - Tóth, Norbert A1 - Wejmo, Elisabet A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Small spacecraft based multiple near-earth asteroid rendezvous and landing with near-term solar sails and ‘Now-Term ‘technologies T2 - 69 th International Astronautical Congress (IAC) N2 - Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, ”If you’ve seen one asteroid, you’ve seen one asteroid”, meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups‘ studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA missionDesigning the 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. IAC-18-F1.2.3 Page 2 of 17 combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population. KW - multiple NEA rendezvous KW - solar sail KW - GOSSAMER-1 KW - MASCOT KW - small spacecraft Y1 - 2018 N1 - 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. https://www.bho-legal.com/1-5-october-2018-69th-international-astronautical-congress-2018-in-bremen-germany/ SP - 1 EP - 18 ER - TY - CHAP A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Gomez, Francisco A1 - Bil, Cees T1 - On the Applicability of Empirical Drag Estimation Methods for Unmanned Air Vehicle Design Read More: https://arc.aiaa.org/doi/10.2514/6.2018-3192 T2 - 2018 Aviation Technology, Integration, and Operations Conference, AIAA AVIATION Forum Y1 - 2018 U6 - https://doi.org/10.2514/6.2018-3192 SN - 1533-385X N1 - AIAA 2018-3192 SP - Article 3192 ER - TY - CHAP A1 - Waldmann, Christoph A1 - Vera, Jean-Pierre de A1 - Dachwald, Bernd A1 - Strasdeit, Henry A1 - Sohl, Frank A1 - Hanff, Hendrik A1 - Kowalski, Julia A1 - Heinen, Dirk A1 - Macht, Sabine A1 - Bestmann, Ulf A1 - Meckel, Sebastian A1 - Hildebrandt, Marc A1 - Funke, Oliver A1 - Gehrt, Jan-Jöran T1 - Search for life in ice-covered oceans and lakes beyond Earth T2 - 2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761 N2 - The quest for life on other planets is closely connected with the search for water in liquid state. Recent discoveries of deep oceans on icy moons like Europa and Enceladus have spurred an intensive discussion about how these waters can be accessed. The challenge of this endeavor lies in the unforeseeable requirements on instrumental characteristics both with respect to the scientific and technical methods. The TRIPLE/nanoAUV initiative is aiming at developing a mission concept for exploring exo-oceans and demonstrating the achievements in an earth-analogue context, exploring the ocean under the ice shield of Antarctica and lakes like Dome-C on the Antarctic continent. KW - Planetary exploration KW - Jupiter KW - ice moons KW - underwater vehicle KW - Antarctica Y1 - 2018 U6 - https://doi.org/10.1109/AUV.2018.8729761 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten T1 - Initial Sizing for a Family of Hybrid-Electric VTOL General Aviation Aircraft T2 - 67. Deutscher Luft- und Raumfahrtkongress 2018 Y1 - 2018 ER - TY - CHAP A1 - Ludowicy, Jonas A1 - Rings, René A1 - Finger, Felix A1 - Braun, Carsten T1 - Sizing Studies of Light Aircraft with Serial Hybrid Propulsion Systems T2 - Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen Y1 - 2018 ER - TY - CHAP A1 - Ludowicy, Jonas A1 - Rings, René A1 - Finger, Felix A1 - Braun, Carsten T1 - Sizing Studies of Light Aircraft with Parallel Hybrid Propulsion Systems T2 - Deutscher Luft- und Raumfahrtkongress 2018 Y1 - 2018 U6 - https://doi.org/10.25967/480227 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Case studies in initial sizing for hybrid-electric general aviation aircraft T2 - 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio Y1 - 2018 U6 - https://doi.org/10.2514/6.2018-5005 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils T1 - Flexible Fuel Operation of a Dry-Low-Nox Micromix Combustor with Variable Hydrogen Methane Mixtures T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGTC-2019-013 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Boden, Ralf A1 - Ceriotti, Matteo A1 - Chand, Suditi A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Heiligers, Jeannette A1 - Herčík, David A1 - Hérique, Alain A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Kofman, Wlodek A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - McInnes, Colin A1 - Meß, Jan-Gerd A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Moore, Iain A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettemeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Rogez, Yves A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Tóth, Norbert A1 - Vergaaij, Merel A1 - Viavattene, Giulia A1 - Wejmo, Elisabet A1 - Wiedemann, Carsten A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Flights are ten a sail – Re-use and commonality in the design and system engineering of small spacecraft solar sail missions with modular hardware for responsive and adaptive exploration T2 - 70th International Astronautical Congress (IAC) KW - system engineering KW - small solar system body characterisation KW - small spacecraft solar sail KW - small spacecraft asteroid lander KW - responsive space Y1 - 2019 SN - 9781713814856 N1 - 70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019 SP - 1 EP - 7 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Boden, Ralf Christian A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Hercik, D. A1 - Herique, A. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Kofman, Wlodek A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - McInnes, Colin R. A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Moore, Iain A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettemeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Rogez, Yves A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Toth, Norbert A1 - Viavattene, Giulia A1 - Wejmo, Elisabet A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Responsive integrated small spacecraft solar sail and payload design concepts and missions T2 - Conference: 5th International Symposium on Solar Sailing (ISSS 2019) N2 - Asteroid mining has the potential to greatly reduce the cost of in-space manufacturing, production of propellant for space transportation and consumables for crewed spacecraft, compared to launching the required resources from Earth’s deep gravity well. This paper discusses the top-level mission architecture and trajectory design for these resource-return missions, comparing high-thrust trajectories with continuous low-thrust solar-sail trajectories. This work focuses on maximizing the economic Net Present Value, which takes the time-cost of finance into account and therefore balances the returned resource mass and mission duration. The different propulsion methods will then be compared in terms of maximum economic return, sets of attainable target asteroids, and mission flexibility. This paper provides one more step towards making commercial asteroid mining an economically viable reality by integrating trajectory design, propulsion technology and economic modelling. Y1 - 2019 N1 - Conference: 5th International Symposium on Solar Sailing (ISSS 2019)At: Aachen, Germany ER -