TY - CHAP A1 - Schirra, Julian A1 - Bauschat, J.-Michael A1 - Watmuff, J.H. T1 - Accurate induced drag prediction for highly non-planar lifting systems T2 - 19th Australasian Fluid Mechanics Conference : 8.-11. Dezember 2014, Melbourne, Australia N2 - The impact of wake model effects is investigated for two highly non-planar lifting systems. Dependent on the geometrical arrangement of the configuration, the wake model shape is found to considerably affect the estimation. Particularly at higher angles of attack, an accurate estimation based on the common linear wake model approaches is involved. Y1 - 2014 ER - TY - CHAP A1 - Neu, Eugen A1 - Janser, Frank A1 - Khatibi, Akbar A. A1 - Orifici, Adrian C. T1 - In-flight vibration-based structural health monitoring of aircraft wings T2 - 30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea N2 - This work presents a methodology for automated damage-sensitive feature extraction and anomaly detection under multivariate operational variability for in-flight assessment of wings. The method uses a passive excitation approach, i. e. without the need for artificial actuation. The modal system properties (natural frequencies and damping ratios) are used as damage-sensitive features. Special emphasis is placed on the use of Fiber Bragg Grating (FBG) sensing technology and the consideration of Operational and Environmental Variability (OEV). Measurements from a wind tunnel investigation with a composite cantilever equipped with FBG and piezoelectric sensors are used to successfully detect an impact damage. In addition, the feasibility of damage localisation and severity estimation is evaluated based on the coupling found between damageand OEV-induced feature changes. Y1 - 2016 ER - TY - CHAP A1 - Barnat, Miriam A1 - Bosse, Elke T1 - The challenge of creating meta-inferences: Combining data representing institutional and individual perspectives on first-year support in higher education T2 - 9th Conference on Social Science Methodology of the International Sociological Association, Leicester, UK Y1 - 2016 N1 - RC33 Conference 2016 SP - 1 EP - 20 ER - TY - CHAP A1 - Kleine, Harald A1 - Kallweit, Stephan A1 - Michaux, Frank A1 - Havermann, Marc A1 - Olivier, Herbert T1 - PIV Measurement of Shock Wave Diffraction T2 - 18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2016, Lissabon Y1 - 2016 SP - 1 EP - 14 ER - TY - CHAP A1 - Schleupen, Josef A1 - Engemann, Heiko A1 - Bagheri, Mohsen A1 - Kallweit, Stephan T1 - The potential of SMART climbing robot combined with a weatherproof cabin for rotor blade maintenance T2 - 17th European Conference on Composite Materials – ECCM, Munich, Germany Y1 - 2016 N1 - ECCM 17 SP - 1 EP - 8 ER - TY - CHAP A1 - Funke, Harald A1 - Keinz, Jan A1 - Hendrick, P. T1 - Experimental Evaluation of the Pollutant and Noise Emissions of the GTCP 36-300 Gas Turbine Operated with Kerosene and a Low NOX Micromix Hydrogen Combustor T2 - 7th European Conference for Aeronautics and Space Sciences, EUCASS 2017 Y1 - 2017 U6 - https://doi.org/10.13009/EUCASS2017-125 ER - TY - CHAP A1 - Kreyer, Jörg A1 - Müller, Marvin A1 - Esch, Thomas T1 - A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude N2 - In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented. Y1 - 2020 U6 - https://doi.org/10.25967/490162 N1 - 68. Deutscher Luft- und Raumfahrtkongress 30.09.-02.10.2019, Darmstadt PB - DGLR CY - Bonn ER - TY - CHAP A1 - Striegan, Constantin J. D. A1 - Struth, Benjamin A1 - Dickhoff, Jens A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Bohn, Dieter T1 - Numerical Simulations of the Micromix DLN Hydrogen Combustion Technology with LES and Comparison to Results of RANS and Experimental Data T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan. Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGCT-2019-147 SP - 1 EP - 9 ER - TY - CHAP A1 - Englhard, Markus A1 - Weber, Tobias A1 - Arent, Jan-Christoph T1 - Efficiency enhancement for CFRP-Prepregautoclave manufacturing by means of simulation-assisted loading optimization T2 - Proceedings of SAMPE Europe Conference 2021 N2 - A new method for improved autoclave loading within the restrictive framework of helicopter manufacturing is proposed. It is derived from experimental and numerical studies of the curing process and aims at optimizing tooling positions in the autoclave for fast and homogeneous heat-up. The mold positioning is based on two sets of information. The thermal properties of the molds, which can be determined via semi-empirical thermal simulation. The second information is a previously determined distribution of heat transfer coefficients inside the autoclave. Finally, an experimental proof of concept is performed to show a cycle time reduction of up to 31% using the proposed methodology. Y1 - 2021 N1 - SAMPE Europe Conference 2021, Baden/Zürich, Schweiz, 29. bis 30. September 2021 ER - TY - CHAP A1 - Striegan, C. A1 - Haj Ayed, A. A1 - Funke, Harald A1 - Loechle, S. A1 - Kazari, M. A1 - Horikawa, A. A1 - Okada, K. A1 - Koga, K. T1 - Numerical combustion and heat transfer simulations and validation for a hydrogen fueled "micromix" test combustor in industrial gas turbine applications T2 - Proceedings of the ASME Turbo Expo Y1 - 2017 SN - 978-079185085-5 U6 - https://doi.org/10.1115/GT2017-64719 N1 - ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017; Charlotte; United States; 26 June 2017 through 30 June 2017 IS - Volume Part F130041-4B, 2017 ER - TY - CHAP A1 - Hoeveler, Bastian A1 - Janser, Frank T1 - The aerodynamically optimized design of a fan-in-wing duct T2 - Applied Aerodynamics Research Conference 2016, Bristol, GB, Jul 19-21, 2016 Y1 - 2016 SN - 1-85768-371-4 N1 - G1-3-paper.pdf SP - 1 EP - 10 ER - TY - CHAP A1 - Otten, D. A1 - Schmidt, M. A1 - Weber, Tobias T1 - Advances in Determination of Material Parameters for Functional Simulations Based on Process Simulations T2 - SAMPE Europe Conference 16 Liege Y1 - 2016 SN - 978-1-5108-3800-0 SP - 570 EP - 577 ER - TY - CHAP A1 - Weber, Tobias A1 - Tellis, Jane J. A1 - Duhovic, Miro T1 - Characterization of tool-part-interaction an interlaminar friction for manufacturing process simulation T2 - ECCM 17, 17th European Conference on Composite Materials, München, DE, Jun 26-30, 2016 Y1 - 2016 SN - 978-3-00-053387-7 SP - 1 EP - 7 ER - TY - CHAP A1 - Hailer, Benjamin A1 - Weber, Tobias A1 - Arent, Jan-Christoph T1 - Manufacturing Process Simulation for Autoclave-Produced Sandwich Structures T2 - Proceedings of SAMPE Europe Conference 2019, Nantes, France Y1 - 2019 SP - 1 EP - 8 ER - TY - CHAP A1 - Weber, Tobias A1 - Englhard, Markus A1 - Hailer, Benjamin A1 - Arent, Jan-Christoph T1 - Manufacturing Process Simulation for the Prediction of Tool-Part-Interaction and Ply Wrinkling T2 - Proceedings of SAMPE Europe Conference 2019, Nantes, France Y1 - 2019 SP - 1 EP - 10 ER - TY - CHAP A1 - Weber, Tobias A1 - Englhard, Markus A1 - Hailer, Benjamin A1 - Arent, Jan-Christoph T1 - Manufacturing Process Simulation for the Prediction of Tool-Part-Interaction and Ply Wrinkling T2 - Proceedings of SAMPE Europe Conference, Amiens , France Y1 - 2015 SP - 1 EP - 10 ER - TY - CHAP A1 - Weber, Tobias T1 - Manufacturing Process Simulation for Tooling Optimization: Reduction of Quality Issues During Autoclave Manufacturing of Composite Parts T2 - Proceedings of SAMPE Europe Conference 2015, Amiens, France Y1 - 2015 SP - 1 EP - 8 ER - TY - CHAP A1 - Otten, D. A1 - Schmid, M. A1 - Weber, Tobias T1 - Advances In Sheet Metal-Forming: Reduction Of Tooling Cost By Methodical Optimization T2 - Proceedings of SAMPE Europe Conference, Amiens , France Y1 - 2015 ER - TY - CHAP A1 - Kroniger, Daniel A1 - Horikawa, Atsushi A1 - Funke, Harald A1 - Pfäffle, Franziska T1 - Numerical investigation of micromix hydrogen flames at different combustor pressure levels T2 - The Proceedings of the International Conference on Power Engineering (ICOPE) N2 - This study investigates the influence of pressure on the temperature distribution of the micromix (MMX) hydrogen flame and the NOx emissions. A steady computational fluid dynamic (CFD) analysis is performed by simulating a reactive flow with a detailed chemical reaction model. The numerical analysis is validated based on experimental investigations. A quantitative correlation is parametrized based on the numerical results. We find, that the flame initiation point shifts with increasing pressure from anchoring behind a downstream located bluff body towards anchoring upstream at the hydrogen jet. The numerical NOx emissions trend regarding to a variation of pressure is in good agreement with the experimental results. The pressure has an impact on both, the residence time within the maximum temperature region and on the peak temperature itself. In conclusion, the numerical model proved to be adequate for future prototype design exploration studies targeting on improving the operating range. KW - Gas turbine combustion KW - Hydrogen KW - NOx emissions KW - Flame temperature KW - Flame residence time Y1 - 2021 U6 - https://doi.org/10.1299/jsmeicope.2021.15.2021-0237 N1 - International Conference on Power Engineering 2021 (ICOPE-2021). October 17 - 21, 2021. Kobe, Japan (Online) ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Okada, Kunio A1 - Yamaguchi, Masato A1 - Aoki, Shigeki A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine T2 - Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions N2 - Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat. KW - industrial gas turbine KW - combustor development KW - engine demonstration KW - fuels KW - hydrogen Y1 - 2021 U6 - https://doi.org/10.1115/GT2021-59666 N1 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. June 7–11, 2021. Virtual, Online. Paper No: GT2021-59666, V03BT04A014 ER -