TY - CHAP A1 - Kraft, Bodo A1 - Meyer, Oliver A1 - Nagl, Manfred T1 - Graph technology support for conceptual design in civil engineering N2 - In: Advances in intelligent computing in engineering : proceedings of the 9.International EG-ICE Workshop ; Darmstadt, (01 - 03 August) 2002 / Martina Schnellenbach-Held ... (eds.) . - Düsseldorf: VDI-Verl., 2002 .- Fortschritt-Berichte VDI, Reihe 4, Bauingenieurwesen ; 180 ; S. 1-35 The paper describes a novel way to support conceptual design in civil engineering. The designer uses semantical tools guaranteeing certain internal structures of the design result but also the fulfillment of various constraints. Two different approaches and corresponding tools are discussed: (a) Visually specified tools with automatic code generation to determine a design structure as well as fixing various constraints a design has to obey. These tools are also valuable for design knowledge specialist. (b) Extensions of existing CAD tools to provide semantical knowledge to be used by an architect. It is sketched how these different tools can be combined in the future. The main part of the paper discusses the concepts and realization of two prototypes following the two above approaches. The paper especially discusses that specific graphs and the specification of their structure are useful for both tool realization projects. KW - CAD KW - CAD ; KW - CAD KW - civil engineering Y1 - 2002 SN - 3-18-318004-9 ER - TY - CHAP A1 - Kraft, Bodo A1 - Nagl, Manfred T1 - Support of Conceptual Design in Civil Engineering by Graph-based Tools N2 - WS GTaD-2003 - The 1st Workshop on Graph Transformations and Design ed Grabska, E., Seite 6-7, Jagiellonian University Krakow. 2 pages KW - CAD KW - CAD KW - Bauingenieurwesen KW - CAD KW - civil engineering Y1 - 2003 ER - TY - CHAP A1 - Kraft, Bodo A1 - Nagl, Manfred T1 - Semantic tool support for conceptual design N2 - ITCE-2003 - 4th Joint Symposium on Information Technology in Civil Engineering ed Flood, I., Seite 1-12, ASCE (CD-ROM), Nashville, USA In this paper we discussed graph based tools to support architects during the conceptual design phase. Conceptual Design is defined before constructive design; the used concepts are more abstract. We develop two graph based approaches, a topdown using the graph rewriting system PROGRES and a more industrially oriented approach, where we extend the CAD system ArchiCAD. In both approaches, knowledge can be defined by a knowledge engineer, in the top-down approach in the domain model graph, in the bottom-up approach in the in an XML file. The defined knowledge is used to incrementally check the sketch and to inform the architect about violations of the defined knowledge. Our goal is to discover design error as soon as possible and to support the architect to design buildings with consideration of conceptual knowledge. KW - CAD KW - CAD KW - Bauingenieurwesen KW - CAD KW - civil engineering Y1 - 2003 ER - TY - CHAP A1 - Kraft, Bodo A1 - Nagl, Manfred T1 - Parameterized specification of conceptual design tools in civil engineering N2 - Applications of Graph Transformations with Industrial Relevance Lecture Notes in Computer Science, 2004, Volume 3062/2004, 90-105, DOI: 10.1007/978-3-540-25959-6_7 In this paper we discuss how tools for conceptual design in civil engineering can be developed using graph transformation specifications. These tools consist of three parts: (a) for elaborating specific conceptual knowledge (knowledge engineer), (b) for working out conceptual design results (architect), and (c) automatic consistency analyses which guarantee that design results are consistent with the underlying specific conceptual knowledge. For the realization of such tools we use a machinery based on graph transformations. In a traditional PROGRES tool specification the conceptual knowledge for a class of buildings is hard-wired within the specification. This is not appropriate for the experimentation platform approach we present in this paper, as objects and relations for conceptual knowledge are due to many changes, implied by evaluation of their use and corresponding improvements. Therefore, we introduce a parametric specification method with the following characteristics: (1) The underlying specific knowledge for a class of buildings is not fixed. Instead, it is built up as a data base by using the knowledge tools. (2) The specification for the architect tools also does not incorporate specific conceptual knowledge. (3) An incremental checker guarantees whether a design result is consistent with the current state of the underlying conceptual knowledge (data base). KW - CAD KW - CAD KW - Bauingenieurwesen KW - CAD KW - civil engineering Y1 - 2004 ER - TY - CHAP A1 - Kraft, Bodo T1 - Conceptual design tools for civil engineering N2 - Applications of Graph Transformations with Industrial Relevance Lecture Notes in Computer Science, 2004, Volume 3062/2004, 434-439, DOI: http://dx.doi.org/10.1007/978-3-540-25959-6_33 This paper gives a brief overview of the tools we have developed to support conceptual design in civil engineering. Based on the UPGRADE framework, two applications, one for the knowledge engineer and another for architects allow to store domain specific knowledge and to use this knowledge during conceptual design. Consistency analyses check the design against the defined knowledge and inform the architect if rules are violated. KW - CAD KW - CAD KW - Bauingenieurwesen KW - CAD KW - civil engineering Y1 - 2004 ER - TY - CHAP A1 - Kraft, Bodo A1 - Wilhelms, N. T1 - Interactive distributed knowledge support for conceptual building design N2 - In: Net-distributed Co-operation : Xth International Conference on Computing in Civil and Building Engineering, Weimar, June 02 - 04, 2004 ; proceedings / [ed. by Karl Beuke ...] . - Weimar: Bauhaus-Univ. Weimar 2004. - 1. Aufl. . Seite 1-14 ISBN 3-86068-213-X International Conference on Computing in Civil and Building Engineering <10, 2004, Weimar> Summary In our project, we develop new tools for the conceptual design phase. During conceptual design, the coarse functionality and organization of a building is more important than a detailed worked out construction. We identify two roles, first the knowledge engineer who is responsible for knowledge definition and maintenance; second the architect who elaborates the conceptual de-sign. The tool for the knowledge engineer is based on graph technology, it is specified using PROGRES and the UPGRADE framework. The tools for the architect are integrated to the in-dustrial CAD tool ArchiCAD. Consistency between knowledge and conceptual design is en-sured by the constraint checker, another extension to ArchiCAD. KW - CAD KW - CAD KW - Bauingenieurwesen KW - CAD KW - civil engineering Y1 - 2004 SN - 3-86068-213-X ER - TY - CHAP A1 - Kirchhof, M. A1 - Kraft, Bodo T1 - UML-based modeling of architectural knowledge and design N2 - IASSE-2004 - 13th International Conference on Intelligent and Adaptive Systems and Software Engineering eds. W. Dosch, N. Debnath, pp. 245-250, ISCA, Cary, NC, 1-3 July 2004, Nice, France We introduce a UML-based model for conceptual design support in civil engineering. Therefore, we identify required extensions to standard UML. Class diagrams are used for elaborating building typespecific knowledge: Object diagrams, implicitly contained in the architect’s sketch, are validated against the defined knowledge. To enable the use of industrial, domain-specific tools, we provide an integrated conceptual design extension. The developed tool support is based on graph rewriting. With our approach architects are enabled to deal with semantic objects during early design phase, assisted by incremental consistency checks. KW - UML KW - UML KW - Unified Modeling Language KW - UML KW - Unified Modeling Language Y1 - 2004 ER - TY - CHAP A1 - Kraft, Bodo A1 - Schneider, Gerd T1 - Semantic Roomobjects for Conceptual Design Support : A Knowledge-based Approach N2 - In: Computer Aided Architectural Design Futures 2005 2005, Part 4, 207-216, DOI: http://dx.doi.org/10.1007/1-4020-3698-1_19 The conceptual design at the beginning of the building construction process is essential for the success of a building project. Even if some CAD tools allow elaborating conceptual sketches, they rather focus on the shape of the building elements and not on their functionality. We introduce semantic roomobjects and roomlinks, by way of example to the CAD tool ArchiCAD. These extensions provide a basis for specifying the organisation and functionality of a building and free architects being forced to directly produce detailed constructive sketches. Furthermore, we introduce consistency analyses of the conceptual sketch, based on an ontology containing conceptual relevant knowledge, specific to one class of buildings. KW - CAD KW - CAD KW - Bauingenieurwesen KW - CAD KW - civil engineering Y1 - 2005 SN - 978-1-4020-3460-2 ER - TY - CHAP A1 - Kraft, Bodo A1 - Wilhelms, Nils T1 - Visual Knowledge Specification for Conceptual Design N2 - Proc. of the 2005 ASCE Intl. Conf. on Computing in Civil Engineering (ICCC 2005) eds. L. Soibelman und F. Pena-Mora, Seite 1-14, ASCE (CD-ROM), Cancun, Mexico, 2005 Current CAD tools are not able to support the fundamental conceptual design phase, and none of them provides consistency analyses of sketches produced by architects. To give architects a greater support at the conceptual design phase, we develop a CAD tool for conceptual design and a knowledge specification tool allowing the definition of conceptually relevant knowledge. The knowledge is specific to one class of buildings and can be reused. Based on a dynamic knowledge model, different types of design rules formalize the knowledge in a graph-based realization. An expressive visual language provides a user-friendly, human readable representation. Finally, consistency analyses enable conceptual designs to be checked against this defined knowledge. In this paper we concentrate on the knowledge specification part of our project. KW - CAD KW - CAD KW - Bauingenieurwesen KW - CAD KW - civil engineering Y1 - 2005 ER - TY - CHAP A1 - Kraft, Bodo A1 - Retkowitz, Daniel T1 - Operationale Semantikdefinition für konzeptuelles Regelwissen N2 - In: Forum Bauinformatik 2005 : junge Wissenschaftler forschen / [Lehrstuhl Bauinformatik, Brandenburgische Technische Universität Cottbus. Frank Schley ... (Hrsg.)]. - Cottbus : Techn. Universität 2005. S. 1-10 ISBN 3-934934-11-0 Mittels eines operationalen Ansatzes zur Semantikdefinition wird am Bei-spiel des konzeptuellen Gebäudeentwurfs ein Regelsystem formalisiert. Dazu werdenzwei Teile, zum einen das Regelwissen, zum anderen ein konzeptueller Entwurfsplan zunächst informell eingeführt und dann formal beschrieben. Darauf aufbauend wird die Grundlage für eine Konsistenzprüfung des konzeptuellen Entwurfs gegen das Regel-wissen formal angeben KW - CAD KW - CAD KW - Bauingenieurwesen KW - CAD KW - civil engineering Y1 - 2005 ER -