TY - JOUR A1 - Wagner, Patrick A1 - Doll, Theodor A1 - Schöning, Michael Josef T1 - Engineering of functional interfaces / Patrick Wagner ; Theodor Doll ; Michael J. Schöning (eds.) JF - Physica status solidi (A) : Applications and materials science Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201470241 SN - 1521-396X (E-Book); 1862-6319 (E-Book); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1339 EP - 1339 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Theoretical study and simulation of light-addressable potentiometric sensors JF - Physica status solidi (A) : applications and materials N2 - The light-addressable potentiometric sensor (LAPS) is a semiconductor-based potentiometric sensor using a light probe with an ability of detecting the concentration of biochemical species in a spatially resolved manner. As an important biomedical sensor, research has been conducted to improve its performance, for instance, to realize high-speed measurement. In this work, the idea of facilitating the device-level simulation, instead of using an equivalent-circuit model, is presented for detailed analysis and optimization of the performance of the LAPS. Both carrier distribution and photocurrent response have been simulated to provide new insight into both amplitude-mode and phase-mode operations of the LAPS. Various device parameters can be examined to effectively design and optimize the LAPS structures and setups for enhanced performance. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330354 SN - 0031-8965 VL - 211 IS - 6 SP - 1467 EP - 1472 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Riedel, Marc A1 - Kartchemnik, Julia A1 - Schöning, Michael Josef A1 - Lisdat, Fred T1 - Impedimetric DNA detection – steps forward to sensorial application JF - Analytical chemistry N2 - This study describes a label-free impedimetric sensor based on short ssDNA recognition elements for the detection of hybridization events. We concentrate on the elucidation of the influence of target length and recognition sequence position on the sensorial performance. The impedimetric measurements are performed in the presence of the redox system ferri-/ferrocyanide and show an increase in charge transfer resistance upon hybridization of ssDNA to the sensor surface. Investigations on the impedimetric signal stability demonstrate a clear influence of the buffers used during the sensor preparation and the choice of the passivating mercaptoalcanol compound. A stable sensor system has been developed, enabling a reproducible detection of 25mer target DNA in the low nanomolar range. After hybridization, a sensor regeneration can be reached with deionized water by adjustment of effective convection conditions, ensuring a sensor reusability. By investigations of longer targets with overhangs exposed to the solution, we can demonstrate applicability of the impedimetric detection for longer ssDNA. However, a decreasing charge transfer resistance change (ΔRct) is found by extending the overhang. As a strategy to increase the impedance change for longer target strands, the position of the recognition sequence can be designed in a way that a small overhang is exposed to the electrode surface. This is found to result in an increase in the relative Rct change. These results suggest that DNA and consequently negative charge near the electrode possess a larger impact on the impedimetric signal than DNA further away. Y1 - 2014 U6 - http://dx.doi.org/10.1021/ac501800q SN - 1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print) VL - 86 (2014) IS - 15 SP - 7867 EP - 7874 PB - ACS Publications CY - Columbus ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution JF - Sensors and actuators B: Chemical N2 - As a semiconductor-based electrochemical sensor, the light-addressable potentiometric sensor (LAPS) can realize two dimensional visualization of (bio-)chemical reactions at the sensor surface addressed by localized illumination. Thanks to this imaging capability, various applications in biochemical and biomedical fields are expected, for which the spatial resolution is critically significant. In this study, therefore, the spatial resolution of the LAPS was investigated in detail based on the device simulation. By calculating the spatiotemporal change of the distributions of electrons and holes inside the semiconductor layer in response to a modulated illumination, the photocurrent response as well as the spatial resolution was obtained as a function of various parameters such as the thickness of the Si substrate, the doping concentration, the wavelength and the intensity of illumination. The simulation results verified that both thinning the semiconductor substrate and increasing the doping concentration could improve the spatial resolution, which were in good agreement with known experimental results and theoretical analysis. More importantly, new findings of interests were also obtained. As for the dependence on the wavelength of illumination, it was found that the known dependence was not always the case. When the Si substrate was thick, a longer wavelength resulted in a higher spatial resolution which was known by experiments. When the Si substrate was thin, however, a longer wavelength of light resulted in a lower spatial resolution. This finding was explained as an effect of raised concentration of carriers, which reduced the thickness of the space charge region. The device simulation was found to be helpful to understand the relationship between the spatial resolution and device parameters, to understand the physics behind it, and to optimize the device structure and measurement conditions for realizing higher performance of chemical imaging systems. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.snb.2014.08.016 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 204 SP - 659 EP - 665 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Khaydukova, M. M. A1 - Zadorozhnaya, O. A. A1 - Kirsanov, D. O. A1 - Iken, Heiko A1 - Rolka, David A1 - Schöning, Michael Josef A1 - Babain, V. A. A1 - Vlasov, Yu. G. A1 - Legin, A. V. T1 - Multivariate processing of atomic-force microscopy images for detection of the response of plasticized polymeric membranes JF - Russian journal of applied chemistry N2 - The possibility of using the atomic-force microscopy as a method for detection of the analytical signal from plasticized polymeric sensor membranes was analyzed. The surfaces of cadmium-selective membranes based on two polymeric matrices were examined. The digital images were processed with multivariate image analysis techniques. A correlation was found between the surface profile of an ion-selective membrane and the concentration of the ion in solution. Y1 - 2014 U6 - http://dx.doi.org/10.1134/S1070427214030112 SN - 1608-3296 (E-Journal); 1070-4272 (Print) VL - 87 IS - 3 SP - 307 EP - 314 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Bäcker, Matthias A1 - Schusser, Sebastian A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Multi-Parametererfassung mit siliziumbasiertem Sensorchip: Aus Drei mach Eins JF - GIT Labor-Fachzeitschrift Y1 - 2014 SN - 0016-3538 IS - 2 SP - 28 EP - 30 PB - Wiley ER - TY - JOUR A1 - Murib, Mohammed Sharif A1 - Yeap, Weng-Siang A1 - Martens, Daan A1 - Bienstman, Peter A1 - Ceuninck, Ward de A1 - Grinsven, Bart van A1 - Schöning, Michael Josef A1 - Michiels, Luc A1 - Haenen, Ken A1 - Ameloot, Marcel A1 - Serpengüzel, Ali A1 - Wagner, Patrick T1 - Photonic detection and characterization of DNA using sapphire microspheres JF - Journal of biomedical optics N2 - A microcavity-based deoxyribonucleic acid (DNA) optical biosensor is demonstrated for the first time using synthetic sapphire for the optical cavity. Transmitted and elastic scattering intensity at 1510 nm are analyzed from a sapphire microsphere (radius 500  μm, refractive index 1.77) on an optical fiber half coupler. The 0.43 nm angular mode spacing of the resonances correlates well with the optical size of the sapphire sphere. Probe DNA consisting of a 36-mer fragment was covalently immobilized on a sapphire microsphere and hybridized with a 29-mer target DNA. Whispering gallery modes (WGMs) were monitored before the sapphire was functionalized with DNA and after it was functionalized with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). The shift in WGMs from the surface modification with DNA was measured and correlated well with the estimated thickness of the add-on DNA layer. It is shown that ssDNA is more uniformly oriented on the sapphire surface than dsDNA. In addition, it is shown that functionalization of the sapphire spherical surface with DNA does not affect the quality factor (Q≈104) of the sapphire microspheres. The use of sapphire is especially interesting because this material is chemically resilient, biocompatible, and widely used for medical implants. Y1 - 2014 U6 - http://dx.doi.org/10.1117/1.JBO.19.9.097006 SN - 1560-2281 (E-Journal); 1083-3668 (Print) VL - 19 IS - 9 SP - 097006 PB - SPIE CY - Bellingham ER - TY - JOUR A1 - Siqueira, Jose R. A1 - Molinnus, Denise A1 - Beging, Stefan A1 - Schöning, Michael Josef T1 - Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection JF - Analytical chemistry N2 - The ideal combination among biomolecules and nanomaterials is the key for reaching biosensing units with high sensitivity. The challenge, however, is to find out a stable and sensitive film architecture that can be incorporated on the sensor’s surface. In this paper, we report on the benefits of incorporating a layer-by-layer (LbL) nanofilm of polyamidoamine (PAMAM) dendrimer and carbon nanotubes (CNTs) on capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors for detecting urea. Three sensor arrangements were studied in order to investigate the adequate film architecture, involving the LbL film with the enzyme urease: (i) urease immobilized directly onto a bare EIS [EIS-urease] sensor; (ii) urease atop the LbL film over the EIS [EIS-(PAMAM/CNT)-urease] sensor; and (iii) urease sandwiched between the LbL film and another CNT layer [EIS-(PAMAM/CNT)-urease-CNT]. The surface morphology of all three urea-based EIS biosensors was investigated by atomic force microscopy (AFM), while the biosensing abilities were studied by means of capacitance–voltage (C/V) and dynamic constant-capacitance (ConCap) measureaments at urea concentrations ranging from 0.1 mM to 100 mM. The EIS-urease and EIS-(PAMAM/CNT)-urease sensors showed similar sensitivity (∼18 mV/decade) and a nonregular signal behavior as the urea concentration increased. On the other hand, the EIS-(PAMAM/CNT)-urease-CNT sensor exhibited a superior output signal performance and higher sensitivity of about 33 mV/decade. The presence of the additional CNT layer was decisive to achieve a urea based EIS sensor with enhanced properties. Such sensitive architecture demonstrates that the incorporation of an adequate hybrid enzyme-nanofilm as sensing unit opens new prospects for biosensing applications using the field-effect sensor platform. Y1 - 2014 U6 - http://dx.doi.org/10.1021/ac500458s SN - 1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print) VL - 86 IS - 11 SP - 5370 EP - 5375 PB - ACS Publications CY - Columbus ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Seki, Kosuke A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Device simulation of the light-addressable potentiometric sensor with a novel photoexcitation method for a higher spatial resolution JF - Procedia Engineering N2 - A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) realized a higher spatial resolution of chemical imaging. In this method, a modulated light probe, which generates the alternating photocurrent signal, is surrounded by a ring of constant light, which suppresses the lateral diffusion of photocarriers by enhancing recombination. A device simulation verified that a higher spatial resolution could be obtained by adjusting the gap between the modulated and constant light. It was also found that a higher intensity and a longer wavelength of constant light was more effective. However, there exists a tradeoff between the spatial resolution and the amplitude of the photocurrent, and thus, the signal-to-noise ratio. A tilted incidence of constant light was applied, which could achieve even higher resolution with a smaller loss of photocurrent. KW - Light-addressable Potentiometric Sensor KW - novel photoexcitation method KW - tilted constant illumination KW - spatial resolution Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.369 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 456 EP - 459 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, K. A1 - Seki, K. A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, T. T1 - Enhancement of the spatial resolution of the chemical imaging sensor by a hybrid fiber-optic illumination JF - Procedia Engineering N2 - The chemical imaging sensor, which is based on the principle of the light-addressable potentiometric sensor (LAPS), is a powerful tool to visualize the spatial distribution of chemical species on the sensor surface. The spatial resolution of this sensor depends on the diffusion of photocarriers excited by a modulated light. In this study, a novel hybrid fiber-optic illumination was developed to enhance the spatial resolution. It consists of a modulated light probe to generate a photocurrent signal and a ring of constant light, which suppresses the lateral diffusion of minority carriers excited by the modulated light. It is demonstrated that the spatial resolution was improved from 92 μm to 68 μm. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.proeng.2014.11.563 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 612 EP - 615 PB - Elsevier CY - Amsterdam ER -