TY - JOUR A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Mass, primary energy, and cost: the impact of optimization objectives on the initial sizing of hybrid-electric general aviation aircraft JF - CEAS Aeronautical Journal N2 - For short take-off and landing (STOL) aircraft, a parallel hybrid-electric propulsion system potentially offers superior performance compared to a conventional propulsion system, because the short-take-off power requirement is much higher than the cruise power requirement. This power-matching problem can be solved with a balanced hybrid propulsion system. However, there is a trade-off between wing loading, power loading, the level of hybridization, as well as range and take-off distance. An optimization method can vary design variables in such a way that a minimum of a particular objective is attained. In this paper, a comparison between the optimization results for minimum mass, minimum consumed primary energy, and minimum cost is conducted. A new initial sizing algorithm for general aviation aircraft with hybrid-electric propulsion systems is applied. This initial sizing methodology covers point performance, mission performance analysis, the weight estimation process, and cost estimation. The methodology is applied to the design of a STOL general aviation aircraft, intended for on-demand air mobility operations. The aircraft is sized to carry eight passengers over a distance of 500 km, while able to take off and land from short airstrips. Results indicate that parallel hybrid-electric propulsion systems must be considered for future STOL aircraft. Y1 - 2020 U6 - http://dx.doi.org/10.1007/s13272-020-00449-8 SN - 1869-5590 N1 - Corresponding author: Felix Finger VL - 2020 IS - 11 SP - 713 EP - 730 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Eggert, Mathias A1 - Alberts, Jens T1 - Frontiers of business intelligence and analytics 3.0: a taxonomy-based literature review and research agenda JF - Business Research N2 - Researching the field of business intelligence and analytics (BI & A) has a long tradition within information systems research. Thereby, in each decade the rapid development of technologies opened new room for investigation. Since the early 1950s, the collection and analysis of structured data were the focus of interest, followed by unstructured data since the early 1990s. The third wave of BI & A comprises unstructured and sensor data of mobile devices. The article at hand aims at drawing a comprehensive overview of the status quo in relevant BI & A research of the current decade, focusing on the third wave of BI & A. By this means, the paper’s contribution is fourfold. First, a systematically developed taxonomy for BI & A 3.0 research, containing seven dimensions and 40 characteristics, is presented. Second, the results of a structured literature review containing 75 full research papers are analyzed by applying the developed taxonomy. The analysis provides an overview on the status quo of BI & A 3.0. Third, the results foster discussions on the predicted and observed developments in BI & A research of the past decade. Fourth, research gaps of the third wave of BI & A research are disclosed and concluded in a research agenda. Y1 - 2020 U6 - http://dx.doi.org/10.1007/s40685-020-00108-y SN - 2198-2627 VL - 2020 IS - 13 SP - 685 EP - 739 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Abel, Thomas A1 - Albracht, Kirsten A1 - Meskemper, Joshua A1 - Foitschik, Tina A1 - Strüder, Heiko K. T1 - Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants JF - European Journal of Applied Physiology N2 - Purpose This study aims to investigate the biomechanics of handcycling during a continuous load trial (CLT) to assess the mechanisms underlying fatigue in upper body exercise. Methods Twelve able-bodied triathletes performed a 30-min CLT at a power output corresponding to lactate threshold in a racing recumbent handcycle mounted on a stationary ergometer. During the CLT, ratings of perceived exertion (RPE), tangential crank kinetics, 3D joint kinematics, and muscular activity of ten muscles of the upper extremity and trunk were examined using motion capturing and surface electromyography. Results During the CLT, spontaneously chosen cadence and RPE increased, whereas crank torque decreased. Rotational work was higher during the pull phase. Peripheral RPE was higher compared to central RPE. Joint range of motion decreased for elbow-flexion and radial-duction. Integrated EMG (iEMG) increased in the forearm flexors, forearm extensors, and M. deltoideus (Pars spinalis). An earlier onset of activation was found for M. deltoideus (Pars clavicularis), M. pectoralis major, M. rectus abdominis, M. biceps brachii, and the forearm flexors. Conclusion Fatigue-related alterations seem to apply analogously in handcycling and cycling. The most distal muscles are responsible for force transmission on the cranks and might thus suffer most from neuromuscular fatigue. The findings indicate that peripheral fatigue (at similar lactate values) is higher in handcycling compared to leg cycling, at least for inexperienced participants. An increase in cadence might delay peripheral fatigue by a reduced vascular occlusion. We assume that the gap between peripheral and central fatigue can be reduced by sport-specific endurance training. Y1 - 2020 U6 - http://dx.doi.org/10.1007/s00421-020-04373-x SN - 1439-6327 IS - 120 SP - 1403 EP - 1415 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Knox, Ronald A1 - Bruggemann, Andrea A1 - Gossmann, Matthias A1 - Thomas, Ulrich A1 - Horváth, András A1 - Dragicevic, Elena A1 - Stoelzle-Feix, Sonja A1 - Fertig, Niels A1 - Jung, Alexander A1 - Raman, Aravind Hariharan A1 - Staat, Manfred A1 - Linder, Peter T1 - Combining physiological relevance and throughput for in vitro cardiac contractility measurement JF - Biophysical Journal N2 - Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.bpj.2019.11.3104 SN - 0006-3495 N1 - Raman, Arayind Hariharan im Artikel unter dem Namen: Raman, Alexander H. VL - 118 IS - Issue 3, Supplement 1 SP - 570a PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Vögele, Stefan A1 - Grajewski, Matthias A1 - Govorukha, Kristina A1 - Rübbelke, Dirk T1 - Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development JF - Applied Energy N2 - The steel industry in the European Union (EU), important for the economy as a whole, faces various challenges. These are inter alia volatile prices for relevant input factors, uncertainties concerning the regulation of CO₂-emissions and market shocks caused by the recently introduced additional import duties in the US, which is an important sales market. We examine primary and secondary effects of these challenges on the steel industry in the EU and their impacts on European and global level. Developing and using a suitable meta-model, we analyze the competitiveness of key steel producing countries with respect to floor prices depending on selected cost factors and draw conclusions on the impacts in the trade of steel on emissions, energy demand, on the involvement of developing countries in the value chain as well on the need for innovations to avoid relocations of production. Hence, our study contributes to the assessment of sustainable industrial development, which is aimed by the Sustainability Development Goal “Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation countries”. By applying information on country-specific Human Development Indexes (reflecting aspects of life expectancy, education, and per capita income), we show that relocating energy-intensive industries from the EU may not only increase global energy demand and CO₂-emissions, but may also be to the disadvantage of developing countries. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.apenergy.2020.114633 SN - 0306-2619 VL - 264 IS - Article number: 114633 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cosma, Cosmin A1 - Kessler, Julia A1 - Gebhardt, Andreas A1 - Campbell, Ian A1 - Balc, Nicolae T1 - Improving the Mechanical Strength of Dental Applications and Lattice Structures SLM Processed JF - Materials N2 - To manufacture custom medical parts or scaffolds with reduced defects and high mechanical characteristics, new research on optimizing the selective laser melting (SLM) parameters are needed. In this work, a biocompatible powder, 316L stainless steel, is characterized to understand the particle size, distribution, shape and flowability. Examination revealed that the 316L particles are smooth, nearly spherical, their mean diameter is 39.09 μm and just 10% of them hold a diameter less than 21.18 μm. SLM parameters under consideration include laser power up to 200 W, 250–1500 mm/s scanning speed, 80 μm hatch spacing, 35 μm layer thickness and a preheated platform. The effect of these on processability is evaluated. More than 100 samples are SLM-manufactured with different process parameters. The tensile results show that is possible to raise the ultimate tensile strength up to 840 MPa, adapting the SLM parameters for a stable processability, avoiding the technological defects caused by residual stress. Correlating with other recent studies on SLM technology, the tensile strength is 20% improved. To validate the SLM parameters and conditions established, complex bioengineering applications such as dental bridges and macro-porous grafts are SLM-processed, demonstrating the potential to manufacture medical products with increased mechanical resistance made of 316L. Y1 - 2020 U6 - http://dx.doi.org/10.3390/ma13040905 SN - 1996-1944 VL - 13 IS - 4 SP - 1 EP - 18 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rupp, Matthias A1 - Rieke, Christian A1 - Handschuh, Nils A1 - Kuperjans, Isabel T1 - Economic and ecological optimization of electric bus charging considering variable electricity prices and CO₂eq intensities JF - Transportation Research Part D: Transport and Environment N2 - In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses. In this study, we present a new methodology for optimizing the vehicles’ charging time as a function of the parameters CO₂eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO₂eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO₂ are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle. In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6% compared to charging at a fixed electricity price. The savings potential of CO₂eq emissions is similar, at 14.9%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO₂eq intensity is also low in this period, but midday charging leads to the largest savings in CO₂eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5% CO₂eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.trd.2020.102293 SN - 1361-9209 VL - 81 IS - Article 102293 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Smith, Wayne A1 - Kotliar, Konstantin A1 - Lammertyn, Leandi A1 - Ramoshaba, Nthai E. A1 - Vilser, Walthard A1 - Huisman, Hugo W. A1 - Schutte, Aletta E. T1 - Retinal vessel caliber and caliber responses in true normotensive black and white adults: The African-PREDICT study JF - Microvascular Research N2 - Purpose Globally, a detrimental shift in cardiovascular disease risk factors and a higher mortality level are reported in some black populations. The retinal microvasculature provides early insight into the pathogenesis of systemic vascular diseases, but it is unclear whether retinal vessel calibers and acute retinal vessel functional responses differ between young healthy black and white adults. Methods We included 112 black and 143 white healthy normotensive adults (20–30 years). Retinal vessel calibers (central retinal artery and vein equivalent (CRAE and CRVE)) were calculated from retinal images and vessel caliber responses to flicker light induced provocation (FLIP) were determined. Additionally, ambulatory blood pressure (BP), anthropometry and blood samples were collected. Results The groups displayed similar 24 h BP profiles and anthropometry (all p > .24). Black participants demonstrated a smaller CRAE (158 ± 11 vs. 164 ± 11 MU, p < .001) compared to the white group, whereas CRVE was similar (p = .57). In response to FLIP, artery maximal dilation was greater in the black vs. white group (5.6 ± 2.1 vs. 3.3 ± 1.8%; p < .001). Conclusions Already at a young age, healthy black adults showed narrower retinal arteries relative to the white population. Follow-up studies are underway to show if this will be related to increased risk for hypertension development. The reason for the larger vessel dilation responses to FLIP in the black population is unclear and warrants further investigation. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.mvr.2019.103937 SN - 0026-2862 VL - 128 IS - Article 103937 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Streese, Lukas A1 - Kotliar, Konstantin A1 - Deiseroth, Arne A1 - Infanger, Denis A1 - Gugleta, Konstantin A1 - Schmaderer, Christoph A1 - Hanssen, Henner T1 - Retinal endothelial function in cardiovascular risk patients: A randomized controlled exercise trial JF - Scandinavian Journal of Medicine and Science in Sports N2 - The aim of this study was to investigate, for the first time, the effects of high-intensity interval training (HIIT) on retinal microvascular endothelial function in cardiovascular (CV) risk patients. In the randomized controlled trial, middle-aged and previously sedentary patients with increased CV risk (aged 58 ± 6 years) with ≥ two CV risk factors were randomized into a 12-week HIIT (n = 33) or control group (CG, n = 36) with standard physical activity recommendations. A blinded examiner measured retinal endothelial function by flicker light-induced maximal arteriolar (ADmax) and venular (VDmax) dilatation as well as the area under the arteriolar (AFarea) and venular (VFarea) flicker curve using a retinal vessel analyzer. Standardized assessments of CV risk factors, cardiorespiratory fitness, and retinal endothelial function were performed before and after HIIT. HIIT reduced body mass index, fat mass, and low-density lipoprotein and increased muscle mass and peak oxygen uptake (VO2peak). Both ADmax (pre: 2.7 ± 2.1%, post: 3.0 ± 2.2%, P = .018) and AFarea (pre: 32.6 ± 28.4%*s, post: 37.7 ± 30.6%*s, P = .016) increased after HIIT compared with CG (ADmax, pre: 3.2 ± 1.8%, post: 2.9 ± 1.8%, P = .254; AFarea, pre: 41.6 ± 28.5%*s, post: 37.8 ± 27.0%*s, P = .186). Venular function remained unchanged after HIIT. There was a significant association between ∆-change VO2peak and ∆-changes ADmax and AFarea (P = .026, R² = 0.073; P = .019, R² = 0.081, respectively). 12-weeks of HIIT improved retinal endothelial function in middle-aged patients with increased CV risk independent of the reduction in classical CV risk factors. Exercise has the potential to reverse or at least postpone progression of small vessel disease in older adults with increased CV risk under standard medication. Dynamic retinal vessel analysis seems to be a sensitive tool to detect treatment effects of exercise interventions on retinal microvascular endothelial function in middle-aged individuals with increased CV risk. Y1 - 2020 U6 - http://dx.doi.org/10.1111/sms.13560 SN - 1600-0838 VL - 30 IS - 2 SP - 272 EP - 280 PB - Wiley CY - Oxford ER - TY - JOUR A1 - Schmidt, Aaron C. A1 - Turgut, Hatice A1 - Le, Dao A1 - Beloqui, Ana A1 - Delaittre, Guillaume T1 - Making the best of it: nitroxide-mediated polymerization of methacrylates via the copolymerization approach with functional styrenics JF - Polymer Chemistry N2 - The SG1-mediated solution polymerization of methyl methacrylate (MMA) and oligo(ethylene glycol) methacrylate (OEGMA, Mₙ = 300 g mol⁻¹) in the presence of a small amount of functional/reactive styrenic comonomer is investigated. Moieties such as pentafluorophenyl ester, triphenylphosphine, azide, pentafluorophenyl, halide, and pyridine are considered. A comonomer fraction as low as 5 mol% typically results in a controlled/living behavior, at least up to 50% conversion. Chain extensions with styrene for both systems were successfully performed. Variation of physical properties such as refractive index (for MMA) and phase transition temperature (for OEGMA) were evaluated by comparing to 100% pure homopolymers. The introduction of an activated ester styrene derivative in the polymerization of OEGMA allows for the synthesis of reactive and hydrophilic polymer brushes with defined thickness. Finally, using the example of pentafluorostyrene as controlling comonomer, it is demonstrated that functional PMMA-b-PS are able to maintain a phase separation ability, as evidenced by the formation of nanostructured thin films. Y1 - 2020 U6 - http://dx.doi.org/10.1039/C9PY01458F VL - 11 IS - 2 SP - 593 EP - 604 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER -