TY - JOUR A1 - Bung, Daniel B. T1 - Developing flow in skimming flow regime on embankment stepped spillways JF - Journal of hydraulic research Y1 - 2011 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - Vol. 49 IS - Iss. 5 SP - 639 EP - 648 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Kirstein, Simon A1 - Müller, Karsten A1 - Walecki-Mingers, Mark A1 - Deserno, Thomas M. T1 - Robust adaptive flow line detection in sewer pipes JF - Automation in construction N2 - As part of a novel approach to automatic sewer inspection, this paper presents a robust algorithm for automatic flow line detection. A large image repository is obtained from about 50,000 m sewers to represent the high variability of real world sewer systems. Automatic image processing combines Canny edge detection, Hough transform for straight lines and cost minimization using Dijkstra's shortest path algorithm. Assuming that flow lines are mostly smoothly connected horizontal structures, piecewise flow line delineation is reduced to a process of selecting adjacent line candidates. Costs are derived from the gap between adjacent candidates and their reliability. A single parameter α enables simple control of the algorithm. The detected flow line may precisely follow the segmented edges (α = 0.0) or minimize gaps at joints (α = 1.0). Both, manual and ground truth-based analysis indicate that α = 0.8 is optimal and independent of the sewer's material. The algorithm forms an essential step to further automation of sewer inspection. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.autcon.2011.05.009 SN - 1872-7891 (E-Journal) ; 0926-5805 (Print) IS - 21 SP - 24 EP - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Oertel, Mario A1 - Bung, Daniel B. T1 - Initial stage of two-dimensional dam-break waves: laboratory versus VOF JF - Journal of hydraulic research N2 - Since several decades, dam-break waves have been of main research interest. Mathematical approaches have been developed by analytical, physical and numerical models within the past 120 years. During the past 10 years, the number of research investigations has increased due to improved measurement techniques as well as significantly increased computer memories and performances. In this context, the present research deals with the initial stage of two-dimensional dam-break waves by comparing physical and numerical model results as well as analytical approaches. High-speed images and resulting particle image velocimetry calculations are thereby compared with the numerical volume-of-fluid (VOF) method, included in the commercial code FLOW-3D. Wave profiles and drag forces on placed obstacles are analysed in detail. Generally, a good agreement between the laboratory and VOF results is found. KW - VOF KW - PIV KW - physical model KW - numerical model KW - drag force KW - dam-break Y1 - 2012 U6 - http://dx.doi.org/10.1080/00221686.2011.639981 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - 50 IS - 1 SP - 89 EP - 97 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Bung, Daniel B. T1 - Non-intrusive detection of air–water surface roughness in self-aerated chute flows JF - Journal of hydraulic research Y1 - 2013 SN - 1814-2079 (E-Journal); 0022-1686 (Print) VL - Vol. 51 IS - Iss. 3 SP - 322 EP - 329 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Döring, Bernd A1 - Kendrick, C. A1 - Lawson, R. M. T1 - Thermal capacity of composite floor slabs JF - Energy and buildings Y1 - 2013 SN - 1872-6178 (E-Journal); 0378-7788 (Print) VL - Vol. 67 SP - 531 EP - 539 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Leandro, J. A1 - Bung, Daniel B. A1 - Carvalho, R. T1 - Measuring void fraction and velocity fields of a stepped spillway for skimming flow using non-intrusive methods JF - Experiments in fluids Y1 - 2014 U6 - http://dx.doi.org/10.1007/s00348-014-1732-6 SN - 0723-4864 (Print) ; 1432-1114 (Online) IS - 55 SP - Art. 1732 PB - Springer Nature CY - Heidelberg ER - TY - JOUR A1 - Döring, Bernd A1 - Reger, Vitali A1 - Kuhnhenne, Markus A1 - Feldmann, Markus A1 - Kesti, Jyrki A1 - Lawson, Mark A1 - Botti, Andrea T1 - Steel solutions for enabling zero-energy buildings JF - Steel Construction - Design and Research Y1 - 2015 U6 - http://dx.doi.org/10.1002/stco.201510029 SN - 1867-0539 N1 - The 13th Nordic Steel Construction Conference, Tampere, 2015 (NSCC-2015) VL - 8 IS - 3 SP - 194 EP - 200 PB - Ernst & Sohn CY - Berlin ER - TY - JOUR A1 - Oertel, Mario A1 - Bung, Daniel B. T1 - Stability and scour development of bed material on crossbar block ramps JF - International journal of sediment research N2 - Block ramps are ecologically oriented drop structures with adequate energy dissipation and partially moderate flow velocities. A special case is given with crossbar block ramps, where the upstream and downstream level difference is reduced by a series of basins. To prevent the total structure from failing, the stability of single boulders within the crossbars and the bed material in between must be guaranteed. The present paper addresses the stability of bed material and scour development for various flow regimes. Any bed material erosion may affect the stability of the crossbar boulders, which in turn can result in major damages of the ramp. Therefore new design approaches are developed to choose an appropriate bed material size and to avoid failures of crossbar block ramp structures. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.ijsrc.2014.12.003 SN - 1001-6279 VL - 30 IS - 4 SP - 344 EP - 350 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bayon, Arnau A1 - Valero, Daniel A1 - Garcia-Bartual, Rafael A1 - Vallés-Morán, Francisco José A1 - López-Jiménez, P. Amparo T1 - Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump JF - Environmental Modelling & Software N2 - A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers. Y1 - 2016 SN - 1364-8152 U6 - http://dx.doi.org/10.1016/j.envsoft.2016.02.018 VL - 80 SP - 322 EP - 335 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow JF - Environmental Modelling and Software N2 - Environmental discharges have been traditionally designed by means of cost-intensive and time-consuming experimental studies. Some extensively validated models based on an integral approach have been often employed for water quality problems, as recommended by USEPA (i.e.: CORMIX). In this study, FLOW-3D is employed for a full 3D RANS modelling of two turbulent jet-to-crossflow cases, including free surface jet impingement. Results are compared to both physical modelling and CORMIX to better assess model performance. Turbulence measurements have been collected for a better understanding of turbulent diffusion's parameter sensitivity. Although both studied models are generally able to reproduce jet trajectory, jet separation downstream of the impingement has been reproduced only by RANS modelling. Additionally, concentrations are better reproduced by FLOW-3D when the proper turbulent Schmidt number is used. This study provides a recommendation on the selection of the turbulence model and the turbulent Schmidt number for future outfall structures design studies. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.envsoft.2016.04.030 SN - 1364-8152 (electronic) VL - 82 SP - 218 EP - 228 PB - Elsevier CY - Amsterdam ER -