TY - JOUR A1 - Oertel, Mario A1 - Bung, Daniel Bernhard T1 - Numerische Strömungssimulationen von Fließgewässern : Praxisanwendungen und zukünftige Entwicklungen JF - Korrespondenz Wasserwirtschaft : KW Y1 - 2015 SN - 1616-430X VL - 8 IS - H. 3 SP - 177 EP - 182 PB - Gesellschaft zur Förderung der Abwassertechnik CY - Hennef ER - TY - JOUR A1 - Valero, Daniel A1 - Schalko, Isabella A1 - Friedrich, Heide A1 - Abad, Jorge D. A1 - Bung, Daniel Bernhard A1 - Donchyts, Gennadii A1 - Felder, Stefan A1 - Ferreira, Rui M. L. A1 - Hohermuth, Benjamin A1 - Kramer, Matthias A1 - Li, Danxun A1 - Mendes, Luis A1 - Moreno-Rodenas, Antonio A1 - Nones, Michael A1 - Paron, Paolo A1 - Ruiz-Villanueva, Virginia A1 - Wang, Ruo-Qian A1 - Franca, Mario J. T1 - Pathways towards democratization of hydro-environment observations and data JF - Iahr White Paper Series Y1 - 2021 IS - 1 SP - 1 EP - 9 PB - International Association for Hydro-Environment Engineering and Research (IAHR) ER - TY - JOUR A1 - von Häfen, Hajo A1 - Krautwald, Clemens A1 - Stolle, Jacob A1 - Bung, Daniel Bernhard A1 - Goseberg, Nils T1 - Overland flow of broken solitary waves over a two-dimensional coastal plane JF - Coastal Engineering N2 - Landslides, rock falls or related subaerial and subaqueous mass slides can generate devastating impulse waves in adjacent waterbodies. Such waves can occur in lakes and fjords, or due to glacier calving in bays or at steep ocean coastlines. Infrastructure and residential houses along coastlines of those waterbodies are often situated on low elevation terrain, and are potentially at risk from inundation. Impulse waves, running up a uniform slope and generating an overland flow over an initially dry adjacent horizontal plane, represent a frequently found scenario, which needs to be better understood for disaster planning and mitigation. This study presents a novel set of large-scale flume test focusing on solitary waves propagating over a 1:14.5 slope and breaking onto a horizontal section. Examining the characteristics of overland flow, this study gives, for the first time, insight into the fundamental process of overland flow of a broken solitary wave: its shape and celerity, as well as its momentum when wave breaking has taken place beforehand. KW - Landslide tsunamis KW - Hazard assessment KW - Large scale tests KW - Overland flow KW - Solitary waves Y1 - 2022 U6 - https://doi.org/10.1016/j.coastaleng.2022.104125 SN - 1872-7379 VL - 175 IS - August PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, Daniel A1 - Chanson, Hubert A1 - Bung, Daniel Bernhard T1 - Robust estimators for free surface turbulence characterization: A stepped spillway application JF - Flow Measurement and Instrumentation N2 - Robust estimators are parameters insensitive to the presence of outliers. However, they presume the shape of the variables’ probability density function. This study exemplifies the sensitivity of turbulent quantities to the use of classic and robust estimators and the presence of outliers in turbulent flow depth time series. A wide range of turbulence quantities was analysed based upon a stepped spillway case study, using flow depths sampled with Acoustic Displacement Meters as the flow variable of interest. The studied parameters include: the expected free surface level, the expected fluctuation intensity, the depth skewness, the autocorrelation timescales, the vertical velocity fluctuation intensity, the perturbations celerity and the one-dimensional free surface turbulence spectrum. Three levels of filtering were utilised prior to applying classic and robust estimators, showing that comparable robustness can be obtained either using classic estimators together with an intermediate filtering technique or using robust estimators instead, without any filtering technique. Y1 - 2020 U6 - https://doi.org/10.1016/j.flowmeasinst.2020.101809 SN - 0955-5986 VL - 76 IS - Art. 101809 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, D. A1 - Bung, Daniel Bernhard A1 - Crookston, B. M. T1 - Closure to “Energy Dissipation of a Type III Basin under Design and Adverse Conditions for Stepped and Smooth Spillways” JF - Journal of Hydraulic Engineering Y1 - 2019 U6 - https://doi.org/10.1061/(ASCE)HY.1943-7900.0001669 VL - 146 IS - 2 PB - ASCE CY - Reston, Va. ER - TY - JOUR A1 - Lopes, Pedro A1 - Leandro, Jorge A1 - Carvalho, Rita F. A1 - Bung, Daniel Bernhard T1 - Alternating skimming flow over a stepped spillway JF - Environmental Fluid Mechanics Y1 - 2017 U6 - https://doi.org/10.1007/s10652-016-9484-x SN - 1573-1510 VL - 17 IS - 2 SP - 303 EP - 322 PB - Springer CY - Berlin ER - TY - JOUR A1 - Lohse, Wolfram T1 - Integraltafel für konische Stäbe mit doppelsymmetrischem I-Querschnitt JF - Stahlbau. 68 (1999), H. 2 Y1 - 1999 SN - 0038-9145 SP - 91 EP - 95 ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel Bernhard T1 - Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow JF - Environmental Modelling and Software N2 - Environmental discharges have been traditionally designed by means of cost-intensive and time-consuming experimental studies. Some extensively validated models based on an integral approach have been often employed for water quality problems, as recommended by USEPA (i.e.: CORMIX). In this study, FLOW-3D is employed for a full 3D RANS modelling of two turbulent jet-to-crossflow cases, including free surface jet impingement. Results are compared to both physical modelling and CORMIX to better assess model performance. Turbulence measurements have been collected for a better understanding of turbulent diffusion's parameter sensitivity. Although both studied models are generally able to reproduce jet trajectory, jet separation downstream of the impingement has been reproduced only by RANS modelling. Additionally, concentrations are better reproduced by FLOW-3D when the proper turbulent Schmidt number is used. This study provides a recommendation on the selection of the turbulence model and the turbulent Schmidt number for future outfall structures design studies. Y1 - 2016 U6 - https://doi.org/10.1016/j.envsoft.2016.04.030 SN - 1364-8152 (electronic) VL - 82 SP - 218 EP - 228 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Egner, Ralf A1 - Heyde, Stefan A1 - Laumann, Jörg A1 - Prokop, Ines T1 - Vorschläge für eine anwenderfreundliche und praxistaugliche Novellierung der allgemeinen Bemessungsregeln und Regeln für den Hochbau (EN 1993 Teil 1-1) JF - Stahlbau Y1 - 2015 U6 - https://doi.org/10.1002/stab.201510321 SN - 1437-1049 VL - 84 IS - 10 SP - 811 EP - 822 PB - Ernst & Sohn CY - Berlin ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel Bernhard A1 - Crookston, B.M. T1 - Energy dissipation of a Type III basin under design and adverse conditions for stepped and smooth spillways JF - Journal of Hydraulic Engineering N2 - New information regarding the influence of a stepped chute on the hydraulic performance of the United States Bureau of Reclamation (Reclamation) Type III hydraulic jump stilling basin is presented for design (steady) and adverse (decreasing tailwater) conditions. Using published experimental data and computational fluid dynamics (CFD) models, this paper presents a detailed comparison between smooth-chute and stepped-chute configurations for chute slopes of 0.8H:1V and 4H:1V and Froude numbers (F) ranging from 3.1 to 9.5 for a Type III basin designed for F = 8. For both stepped and smooth chutes, the relative role of each basin element was quantified, up to the most hydraulic extreme case of jump sweep-out. It was found that, relative to a smooth chute, the turbulence generated by a stepped chute causes a higher maximum velocity decay within the stilling basin, which represents an enhancement of the Type III basin’s performance but also a change in the relative role of the basin elements. Results provide insight into the ability of the CFD models [unsteady Reynolds-averaged Navier-Stokes (RANS) equations with renormalization group (RNG) k-ϵ turbulence model and volume-of-fluid (VOF) for free surface tracking] to predict the transient basin flow structure and velocity profiles. Type III basins can perform adequately with a stepped chute despite the effects steps have on the relative role of each basin element. It is concluded that the classic Type III basin design, based upon methodology by reclamation specific to smooth chutes, can be hydraulically improved for the case of stepped chutes for design and adverse flow conditions using the information presented herein. Y1 - 2018 U6 - https://doi.org/10.1061/(ASCE)HY.1943-7900.0001482 SN - 0733-9429 N1 - Article number 04018036 VL - 144 IS - 7 PB - ASCE CY - Reston, Va. ER -