TY - JOUR A1 - Werner, Frederik A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Lateral resolution enhancement of pulse-driven light-addressable potentiometric sensor JF - Sensor and Actuators B: Chemical N2 - To study chemical and biological processes, spatially resolved determination of the concentrations of one or more analyte species is of distinct interest. With a light-addressable potentiometric sensor (LAPS), chemical images can be created, which visualize the concentration distribution above the sensor plate. One important challenge is to achieve a good lateral resolution in order to detect events that take place in a small and limited region. LAPS utilizes a focused light spot to address the measurement region. By moving this light spot along the semiconductor sensor plate, the concentration distribution can be observed. In this study, we show that utilizing a pulse as light excitation instead of a traditionally used continuously modulated light excitation, the lateral resolution can be improved by a factor of 6 or more. KW - Chemical images KW - LAPS KW - Light-addressable potentiometric sensor Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.02.057 SN - 0925-4005 VL - 248 SP - 961 EP - 965 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ermolenko, Y. E. A1 - Yoshinobu, T. A1 - Mourzina, Y. G. A1 - Vlasov, Y. G. A1 - Schöning, Michael Josef A1 - Iwasaki, H. T1 - Laserscanned transducer (LSST) as a multisensor system JF - Sensors and Actuators B. 103 (2004), H. 1-2 Y1 - 2004 SN - 0925-4005 SP - 457 EP - 462 ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Dahmen, Markus A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - LAPS-based monitoring of metabolic responses of bacterial cultures in a paper fermentation broth JF - Sensors and Actuators B: Chemical N2 - As an alternative renewable energy source, methane production in biogas plants is gaining more and more attention. Biomass in a bioreactor contains different types of microorganisms, which should be considered in terms of process-stability control. Metabolically inactive microorganisms within the fermentation process can lead to undesirable, time-consuming and cost-intensive interventions. Hence, monitoring of the cellular metabolism of bacterial populations in a fermentation broth is crucial to improve the biogas production, operation efficiency, and sustainability. In this work, the extracellular acidification of bacteria in a paper-fermentation broth is monitored after glucose uptake, utilizing a differential light-addressable potentiometric sensor (LAPS) system. The LAPS system is loaded with three different model microorganisms (Escherichia coli, Corynebacterium glutamicum, and Lactobacillus brevis) and the effect of the fermentation broth at different process stages on the metabolism of these bacteria is studied. In this way, different signal patterns related to the metabolic response of microorganisms can be identified. By means of calibration curves after glucose uptake, the overall extracellular acidification of bacterial populations within the fermentation process can be evaluated. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.snb.2020.128232 SN - 0925-4005 VL - 320 IS - Art. 128232 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Label-free sensing of biomolecules with field-effect devices for clinical applications JF - Electroanalysis N2 - Among the variety of transducer concepts proposed for label-free detection of biomolecules, the semiconductor field-effect device (FED) is one of the most attractive platforms. As medical techniques continue to progress towards diagnostic and therapies based on biomarkers, the ability of FEDs for a label-free, fast and real-time detection of multiple pathogenic and physiologically relevant molecules with high specificity and sensitivity offers very promising prospects for their application in point-of-care and personalized medicine for an early diagnosis and treatment of diseases. The presented paper reviews recent advances and current trends in research and development of different FEDs for label-free, direct electrical detection of charged biomolecules by their intrinsic molecular charge. The authors are mainly focusing on the detection of the DNA hybridization event, antibody-antigen affinity reaction as well as clinically relevant biomolecules such as cardiac and cancer biomarkers. Y1 - 2014 U6 - http://dx.doi.org/10.1002/elan.201400073 SN - 1521-4109 (E-Journal); 1040-0397 (Print) VL - 26 IS - 6 SP - 1197 EP - 1213 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wu, Chunsheng A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Bäcker, Matthias A1 - Schöning, Michael Josef T1 - Label-free electrical detection of DNA with a multi-spot LAPS: First step towards light-addressable DNA chips JF - Physica status solidi A : Applications and materials science N2 - A multi-spot (4 × 4 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al–p-Si–SiO2 structure has been applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. Single-stranded probe ssDNA molecules (20 bases) were covalently immobilized onto the silanized SiO2 gate surface. The unspecific adsorption of mismatch ssDNA on the MLAPS gate surface was blocked by bovine serum albumin molecules. To reduce the screening effect and to achieve a high sensor signal, the measurements were performed in a low ionic-strength solution. The photocurrent–voltage (I–V) curves were simultaneously recorded on all 16 spots after each surface functionalization step. Large shifts of I–V curves of 25 mV were registered after the DNA immobilization and hybridization event. In contrast, a small potential shift (∼5 mV) was observed in case of mismatch ssDNA, revealing good specificity of the sensor. The obtained results demonstrate the potential of the MLAPS as promising transducer platform for the multi-spot label-free electrical detection of DNA molecules by their intrinsic molecular charge. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330442 SN - 1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1423 EP - 1428 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Cherstvy, Andrey G. A1 - Pedraza, Angela M. A1 - Ingebrandt, Sven A1 - Schöning, Michael Josef T1 - Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling JF - Physica Status Solidi (a) N2 - Label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization/denaturation by means of an array of individually addressable field-effect-based nanoplate silicon-on-insulator (SOI) capacitors modified with gold nanoparticles (Au-NP) is investigated. The proposed device detects charge changes on Au-NP/DNA hybrids induced by the hybridization or denaturation event. DNA hybridization was performed in a high ionic-strength solution to provide a high hybridization efficiency. On the other hand, to reduce the screening of the DNA charge by counter ions and to achieve a high sensitivity, the sensor signal induced by the hybridization and denaturation events was measured in a low ionic-strength solution. High sensor signals of about 120, 90, and 80 mV were registered after the DNA hybridization, denaturation, and re-hybridization events, respectively. Fluorescence microscopy has been applied as reference method to verify the DNA immobilization, hybridization, and denaturation processes. An electrostatic charge-plane model for potential changes at the gate surface of a nanoplate field-effect sensor induced by the DNA hybridization has been developed taking into account both the Debye length and the distance of the DNA charge from the gate surface. Y1 - 2012 U6 - http://dx.doi.org/10.1002/pssa.201100710 SN - 1862-6319 VL - 209 SP - 925 EP - 934 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Pedraza, A. M. A1 - Schöning, Michael Josef A1 - Poghossian, Arshak T1 - Label-free DNA hybridization and denaturation detection by means of field-effect nanoplate SOI capacitors functionalized with gold nanoparticles JF - Procedia Engineering. 5 (2010) Y1 - 2010 SN - 1877-7058 N1 - Proc. Eurosensors XXIV, September 5–8, 2010, Linz, Austria SP - 918 EP - 921 ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Bronder, Thomas A1 - Wu, Chunsheng A1 - Scheja, Sabrina A1 - Jessing, Max A1 - Metzger-Boddien, Christoph A1 - Keusgen, Michael A1 - Poghossian, Arshak T1 - Label-Free DNA Detection with Capacitive Field-Effect Devices—Challenges and Opportunities JF - Proceedings N2 - Field-effect EIS (electrolyte-insulator-semiconductor) sensors modified with a positively charged weak polyelectrolyte layer have been applied for the electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge. The EIS sensors are able to detect the existence of target DNA amplicons in PCR (polymerase chain reaction) samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Due to their miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge, those sensors can serve as possible platform for the development of label-free DNA chips. Possible application fields as well as challenges and limitations will be discussed. Y1 - 2017 U6 - http://dx.doi.org/10.3390/proceedings1080719 SN - 2504-3900 N1 - This article belongs to the Proceedings of "Proceedings of the 5th International Symposium on Sensor Science (I3S 2017)" VL - 1 IS - 8 SP - Artikel 719 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ingebrandt, S. A1 - Han, Y. A1 - Nakamura, F. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Offenhäusser, A. T1 - Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors JF - Biosensors and Bioelectronics. 22 (2007), H. 12 Y1 - 2007 SN - 0956-5663 SP - 2834 EP - 2840 ER - TY - JOUR A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Label-free detection of double-stranded DNA molecules with polyelectrolyte-modified capacitive field-effect sensors T1 - Markierungsfreie Detektion doppelsträngiger DNA Moleküle mit Hilfe von Polyelektrolyt-modifizierten kapazitiven Feldeffekt-Sensoren JF - tm - Technisches Messen N2 - In this study, polyelectrolyte-modified field-effect-based electrolyte-insulator-semiconductor (EIS) devices have been used for the label-free electrical detection of double-stranded deoxyribonucleic acid (dsDNA)molecules. The sensor-chip functionalization with a positively charged polyelectrolyte layer provides the possibility of direct adsorptive binding of negatively charged target DNA oligonucleotides onto theSiO2-chip surface.EIS sensors can be utilized as a tool to detect surface-charge changes; the electrostatic adsorption of oligonucleotides onto the polyelectrolyte layer leads to a measureable surface-potential change. Signals of 39mV have been recorded after the incubation with the oligonucleotide solution. Besides the electrochemical experiments, the successful adsorption of dsDNA onto the polyelectrolyte layer has been verified via fluorescence microscopy. The presented results demonstrate that the signal recording of EISchips, which are modified with a polyelectrolyte layer, canbe used as a favorable approach for a fast, cheap and simple detection method for dsDNA. Y1 - 2017 U6 - http://dx.doi.org/10.1515/teme-2017-0015 VL - 84 IS - 10 SP - 628 EP - 634 PB - De Gruyter CY - Oldenbourg ER -