TY - JOUR A1 - Bohrn, U. A1 - Stütz, E. A1 - Fleischer, M. A1 - Schöning, Michael Josef T1 - Real-time detection of CO by eukaryotic cells JF - Procedia Engineering. 5 (2010) Y1 - 2010 SN - 1877-7058 N1 - Eurosensor XXIV Conference SP - 17 EP - 20 ER - TY - JOUR A1 - Bertz, Morten A1 - Molinnus, Denise A1 - Schöning, Michael Josef A1 - Homma, Takayuki T1 - Real-time monitoring of H₂O₂ sterilization on individual bacillus atrophaeus spores by optical sensing with trapping Raman spectroscopy JF - Chemosensors N2 - Hydrogen peroxide (H₂O₂), a strong oxidizer, is a commonly used sterilization agent employed during aseptic food processing and medical applications. To assess the sterilization efficiency with H₂O₂, bacterial spores are common microbial systems due to their remarkable robustness against a wide variety of decontamination strategies. Despite their widespread use, there is, however, only little information about the detailed time-resolved mechanism underlying the oxidative spore death by H₂O₂. In this work, we investigate chemical and morphological changes of individual Bacillus atrophaeus spores undergoing oxidative damage using optical sensing with trapping Raman microscopy in real-time. The time-resolved experiments reveal that spore death involves two distinct phases: (i) an initial phase dominated by the fast release of dipicolinic acid (DPA), a major spore biomarker, which indicates the rupture of the spore’s core; and (ii) the oxidation of the remaining spore material resulting in the subsequent fragmentation of the spores’ coat. Simultaneous observation of the spore morphology by optical microscopy corroborates these mechanisms. The dependence of the onset of DPA release and the time constant of spore fragmentation on H₂O₂ shows that the formation of reactive oxygen species from H₂O₂ is the rate-limiting factor of oxidative spore death. KW - DPA (dipicolinic acid) KW - sterilization KW - Bacillus atrophaeus spores KW - optical trapping KW - Raman spectroscopy KW - optical sensor setup Y1 - 2023 U6 - https://doi.org/10.3390/chemosensors11080445 SN - 2227-9040 N1 - This article belongs to the Special Issue "Biosensors and Chemical Sensors for Food and Healthcare Monitoring—Celebrating the 10th Anniversary" VL - 8 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Friedrich, Peter A1 - Berger, Jörg A1 - Rysstad, Gunnar A1 - Schöning, Michael Josef A1 - Keusgen, Michael T1 - Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry JF - Sensors and Actuators B: Chemical N2 - A calorimetric gas sensor is presented for the monitoring of vapour-phase H2O2 at elevated temperature during sterilisation processes in aseptic food industry. The sensor was built up on a flexible polyimide foil (thickness: 25 μm) that has been chosen due to its thermal stability and low thermal conductivity. The sensor set-up consists of two temperature-sensitive platinum thin-film resistances passivated by a layer of SU-8 photo resist and catalytically activated by manganese(IV) oxide. Instead of an active heating structure, the calorimetric sensor utilises the elevated temperature of the evaporated H2O2 aerosol. In an experimental test rig, the sensor has shown a sensitivity of 4.78 °C/(%, v/v) in a H2O2 concentration range of 0%, v/v to 8%, v/v. Furthermore, the sensor possesses the same, unchanged sensor signal even at varied medium temperatures between 210 °C and 270 °C of the gas stream. At flow rates of the gas stream from 8 m3/h to 12 m3/h, the sensor has shown only a slightly reduced sensitivity at a low flow rate of 8 m3/h. The sensor characterisation demonstrates the suitability of the calorimetric gas sensor for monitoring the efficiency of industrial sterilisation processes. KW - Sterilisation process KW - Hydrogen peroxide KW - Polyimide KW - Calorimetric gas sensor Y1 - 2012 U6 - https://doi.org/10.1016/j.snb.2011.01.032 SN - 0925-4005 N1 - Part of special issue "Eurosensors XXIV, 2010" VL - 170 SP - 60 EP - 66 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Friedrich, Peter A1 - Rysstad, G. A1 - Berger, J. A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Realization of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry JF - Procedia Engineering. 5 (2010) Y1 - 2010 SN - 1877-7058 N1 - Eurosensor XXIV Conference SP - 264 EP - 267 ER - TY - JOUR A1 - Leidinger, Rafael A1 - Noisten, Thomas A1 - Wollert, Jörg T1 - Realtime automation networks in moVing industrial environments JF - Journal of systemics, cybernetics and informatics N2 - The radio-based wireless data communication has made the realization of new technical solutions possible in many fields of the automation technology (AT). For about ten years, a constant disproportionate growth of wireless technologies can be observed in the automation technology. However, it shows that especially for the AT, conventional technologies of office automation are unsuitable and/or not manageable. The employment of mobile services in the industrial automation technology has the potential of significant cost and time savings. This leads to an increased productivity in various fields of the AT, for example in the factory and process automation or in production logistics. In this paper technologies and solutions for an automation-suited supply of mobile wireless services will be introduced under the criteria of real time suitability, IT-security and service orientation. Emphasis will be put on the investigation and development of wireless convergence layers for different radio technologies, on the central provision of support services for an easy-to-use, central, backup enabled management of combined wired / wireless networks and on the study on integrability in a Profinet real-time Ethernet network. KW - PROFINET KW - Distributed Control Systems, KW - Industrial Automation Technology, KW - 802.15.4 KW - Bluetooth KW - Wireless Networks Y1 - 2012 SN - 1690-4532 VL - Vol. 10 IS - Iss. 2 SP - 52 EP - 56 PB - IIIC CY - Orlando ER - TY - JOUR A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - Reasoning with Qualitative Positional Information for Domestic Domains in the Situation Calculus JF - Journal of Intelligent & Robotic Systems Y1 - 2011 SN - 0921-0296 VL - 63 IS - 2 SP - 273 EP - 300 PB - Springer CY - Berlin ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Poghossian, Arshak T1 - Recent advances in biologically sensitive field-effect transistors (BioFETs) JF - Analyst. 127 (2002) Y1 - 2002 SN - 0003-2654 SP - 1137 EP - 1151 ER - TY - JOUR A1 - Hoyler, Friedrich A1 - Börner, H. G. A1 - Robinson, S. T1 - Recent developments at the ILL (n,γ)-facility JF - Journal of Physics G. 14 (1988), H. S Y1 - 1988 SN - 0305-4616 SP - S161 EP - S165 ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor JF - Sensors and actuators B: Chemical N2 - The light-addressable potentiometric sensor (LAPS) is an electrochemical sensor with a field-effect structure to detect the variation of the Nernst potential at its sensor surface, the measured area on which is defined by illumination. Thanks to this light-addressability, the LAPS can be applied to chemical imaging sensor systems, which can visualize the two-dimensional distribution of a particular target ion on the sensor surface. Chemical imaging sensor systems are expected to be useful for analysis of reaction and diffusion in various electrochemical and biological samples. Recent developments of LAPS-based chemical imaging sensor systems, in terms of the spatial resolution, measurement speed, image quality, miniaturization and integration with microfluidic devices, are summarized and discussed. Y1 - 2015 U6 - https://doi.org/10.1016/j.snb.2014.09.002 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 207, Part B SP - 926 EP - 932 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Recent progress in silicon-based biologically sensitive field-effect devices JF - Current Opinion in Electrochemistry N2 - Biologically sensitive field-effect devices (BioFEDs) advantageously combine the electronic field-effect functionality with the (bio)chemical receptor’s recognition ability for (bio)chemical sensing. In this review, basic and widely applied device concepts of silicon-based BioFEDs (ion-sensitive field-effect transistor, silicon nanowire transistor, electrolyte-insulator-semiconductor capacitor, light-addressable potentiometric sensor) are presented and recent progress (from 2019 to early 2021) is discussed. One of the main advantages of BioFEDs is the label-free sensing principle enabling to detect a large variety of biomolecules and bioparticles by their intrinsic charge. The review encompasses applications of BioFEDs for the label-free electrical detection of clinically relevant protein biomarkers, deoxyribonucleic acid molecules and viruses, enzyme-substrate reactions as well as recording of the cell acidification rate (as an indicator of cellular metabolism) and the extracellular potential. Y1 - 2021 U6 - https://doi.org/10.1016/j.coelec.2021.100811 SN - 2451-9103 IS - Article number: 100811 PB - Elsevier CY - Amsterdam ER -