TY - JOUR A1 - Bindal, Gaurav A1 - Sharma, Sparsh A1 - Janser, Frank A1 - Neu, Eugen T1 - Detailed analysis of variables affecting wing kinematics of bat flight JF - SAE International Journal of Aerospace Y1 - 2013 U6 - https://doi.org/10.4271/2013-01-9003 SN - 1946-3901 VL - 6 IS - 2 SP - 811 EP - 818 ER - TY - JOUR A1 - Schüller, K. A1 - Kowalski, Julia A1 - Raback, P. T1 - Curvilinear melting – A preliminary experimental and numerical study JF - International Journal of Heat and Mass Transfer N2 - When exploring glacier ice it is often necessary to take samples or implement sensors at a certain depth underneath the glacier surface. One way of doing this is by using heated melting probes. In their common form these devices experience a straight one-dimensional downwards motion and can be modeled by standard close-contact melting theory. A recently developed melting probe however, the IceMole, achieves maneuverability by simultaneously applying a surface temperature gradient to induce a change in melting direction and controlling the effective contact-force by means of an ice screw to stabilize its change in attitude. A modeling framework for forced curvilinear melting does not exist so far and will be the content of this paper. At first, we will extend the existing theory for quasi-stationary close-contact melting to curved trajectories. We do this by introducing a rotational mode. This additional unknown in the system implies yet the need for another model closure. Within this new framework we will focus on the effect of a variable contact-force as well as different surface temperature profiles. In order to solve for melting velocity and curvature of the melting path we present both an inverse solution strategy for the analytical model, and a more general finite element framework implemented into the open source software package ELMER. Model results are discussed and compared to experimental data conducted in laboratory tests. Y1 - 2016 U6 - https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.046 SN - 0017-9310 IS - 92 SP - 884 EP - 892 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Peeken, Heinz A1 - Rosenkranz, Josef A1 - Schelenz, R. T1 - Berücksichtigung des Einflusses der Gleitlagergehäusesteifigkeit auf das dynamische Verhalten von Rotoren JF - Antriebstechnik : Organ der Forschungsvereinigung Antriebstechnik e.V. Y1 - 1991 SN - 0341-2652 VL - 30 IS - 9 SP - 71 EP - 75 ER - TY - JOUR A1 - Konstantinidis, Konstantinos A1 - Flores Martinez, Claudio A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Dykta, Paul A1 - Bowitz, Pascal A1 - Rudolph, Martin A1 - Digel, Ilya A1 - Kowalski, Julia A1 - Voigt, Konstantin A1 - Förstner, Roger T1 - A lander mission to probe subglacial water on Saturn's moon enceladus for life JF - Acta astronautica Y1 - 2015 SN - 1879-2030 (E-Journal); 0094-5765 (Print) VL - Vol. 106 SP - 63 EP - 89 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Stadler, Alexander Maximilian A1 - Garvey, Christopher J. A1 - Embs, Jan Peter A1 - Koza, Michael Marek A1 - Unruh, Tobias A1 - Artmann, Gerhard A1 - Zaccai, Guiseppe T1 - Picosecond dynamics in haemoglobin from different species: A quasielastic neutron scattering study JF - Biochimica et biophysica acta (BBA): General Subjects Y1 - 2014 U6 - https://doi.org/10.1016/j.bbagen.2014.06.007 SN - 1872-8006 (E-Journal); 0304-4165 (Print) VL - 1840 IS - 10 SP - 2989 EP - 2999 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dachwald, Bernd A1 - Mikucki, Jill A1 - Tulaczyk, Slawek A1 - Digel, Ilya A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Kowalski, Julia A1 - Xu, Changsheng T1 - IceMole : A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems JF - Annals of Glaciology N2 - There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample. KW - Antarctic Glaciology KW - Extraterrestrial Glaciology KW - Glaciological instruments and methods KW - Subclacial exploration KW - Subglacial lakes Y1 - 2014 U6 - https://doi.org/10.3189/2014AoG65A004 SN - 1727-5644 VL - 55 IS - 65 SP - 14 EP - 22 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Mathiak, Gerhard A1 - Plescher, Engelbert A1 - Willnecker, Rainer T1 - Liquid metal diffusion experiments in microgravity - Vibrational effects JF - Measurement science and technology Y1 - 2005 U6 - https://doi.org/10.1088/0957-0233/16/2/003 SN - 0957-0233 VL - Vol. 16 IS - No. 2 SP - 336 ER - TY - JOUR A1 - Mathiak, Gerhard A1 - Willnecker, Rainer A1 - Plescher, Engelbert T1 - Vibrational effects on diffusion experiments JF - Microgravity science and technology : international journal for microgravity research and applications Y1 - 2005 SN - 0938-0108 VL - Vol. 15 IS - No. 1 SP - 295 EP - 300 ER - TY - JOUR A1 - Hoeveler, Bastian A1 - Janser, Frank A1 - Bindewald, Thorsten A1 - Gebhardt, Andreas T1 - Entwurf, Fertigung und Untersuchung eines Windkanalmodells eines innovativen, senkrechtstartenden Kleinflugzeuges JF - RTejournal - Forum für Rapid Technologie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0009-2-42921 SN - 1614-0923 IS - 12 SP - 1 EP - 5 PB - Fachhochschule Aachen CY - Aachen ER - TY - JOUR A1 - Kowalski, Julia A1 - Linder, Peter A1 - Zierke, S. A1 - Wulfen, B. van A1 - Clemens, J. A1 - Konstantinidis, K. A1 - Ameres, G. A1 - Hoffmann, R. A1 - Mikucki, J. A1 - Tulaczyk, S. A1 - Funke, O. A1 - Blandfort, D. A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Hiecker, S. A1 - Plescher, Engelbert A1 - Schöngarth, Sarah A1 - Dachwald, Bernd A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Eliseev, D. A1 - Heinen, D. A1 - Scholz, F. A1 - Wiebusch, C. A1 - Macht, S. A1 - Bestmann, U. A1 - Reineking, T. A1 - Zetzsche, C. A1 - Schill, K. A1 - Förstner, R. A1 - Niedermeier, H. A1 - Szumski, A. A1 - Eissfeller, B. A1 - Naumann, U. A1 - Helbing, K. T1 - Navigation technology for exploration of glacier ice with maneuverable melting probes JF - Cold Regions Science and Technology N2 - The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept. Y1 - 2016 U6 - https://doi.org/10.1016/j.coldregions.2015.11.006 SN - 0165-232X IS - 123 SP - 53 EP - 70 PB - Elsevier CY - Amsterdam ER -