TY - CHAP A1 - Mertens, Josef ED - Sobieczky, H. T1 - Supersonic laminar flow T2 - New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366) N2 - Supersonic transports are very drag sensitive. Technology to reduce drag by application of laminar flow, therefore, will be important; it is a prerequisite to achieve very long range capability. In earlier studies it was assumed that SCTs would only become possible by application of laminar flow [376]. But today, we request an SCT to be viable without application of laminar flow in order to maintain its competitiveness when laminar flow becomes available for subsonic and supersonic transports. By reducing fuel burned, laminar flow drag reduction reduces size and weight of the aircraft, or increases range capability -whereas otherwise size and weight would grow towards infinity. Transition mechanisms from laminar to turbulent state of the boundary layer flow (ALT, CFI, TSI) function as for transonic transports, but at more severe conditions: higher sweep angles, cooled surfaces; higher mode instabilities (HMI) must at least be taken into account, although they may not become important below Mach 3. Hitherto there is a worldwide lack of ground test facilities to investigate TSI at the expected cruise Mach numbers between 1.6 and 2.4; in Stuttgart, Germany one such facility -a Ludwieg tube- is still in the validation phase. A quiet Ludwieg tunnel could be a favourable choice for Europe. But it will require a new approach in designing aircraft which includes improved theoretical predictions, usage of classical wind tunnels for turbulent flow and flight tests for validation. KW - Wind Tunnel KW - Flight Test KW - Supersonic Wind Tunnel KW - Parabolized Stability Equation Y1 - 1997 SN - 3-2118-2815-X U6 - https://doi.org/10.1007/978-3-7091-2658-5_18 SP - 275 EP - 290 PB - Springer CY - Wien [u.a.] ER - TY - CHAP A1 - Mertens, Josef A1 - Becker, K. ED - Ballmann, Josef T1 - Numerical solution of flow equations : an aircraft designer's view T2 - Nonlinear hyperbolic equations - theory, computation methods, and applications : proceedings of the 2nd International Conference on Nonlinear Hyperbolic Problems, Aachen, FRG, March 14 to 18, 1988. - (Notes on Numerical Fluid Mechanics ; 24) N2 - Today the most accurate and cost effective industrial codes used in aircraft design are based on the full potential equation coupled with boundary layer equations. However, these are not capable to solve complicated three-dimensional problems of vortical flows and shocks. On the other hand Euler and Navier-Stokes codes are too expensive and not accurate enough for design purposes, especially in regard of drag and interference prediction. The reasons for these deficiencies are investigated and a way to overcome them by future developments is demonstrated. Y1 - 1989 SN - 3-528-08098-1 U6 - https://doi.org/10.1007/978-3-322-87869-4_41 N1 - International Conference on Nonlinear Hyperbolic Problems <3, 1988, Aachen> SP - 403 EP - 412 PB - Vieweg CY - Braunschweig ER - TY - CHAP A1 - Mertens, Josef ED - Sobieczky, H. T1 - Son of Concorde, a technology challenge T2 - New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366) N2 - Concorde (Figure 9) is the only supersonic airliner which has been introduced into regular passenger service. It is still in service at British Airways and Air France without any flight accidents, and probably will stay in service for at least for ten more years. KW - Technology Challenge KW - Multidisciplinary Design Optimization KW - Specific Fuel Consumption KW - Engine Efficiency KW - Sonic Boom Y1 - 1997 SN - 3-2118-2815-X U6 - https://doi.org/10.1007/978-3-7091-2658-5_3 SP - 31 EP - 51 PB - Springer CY - Wien [u.a.] ER - TY - CHAP A1 - Mertens, Josef ED - Sobieczky, H. T1 - Aerodynamic multi point design challenge T2 - New design concepts for high speed air transport.- (Courses and lectures / International Centre for Mechanical Sciences ; 366) N2 - In the chapter “Son of Concorde, a Technology Challenge” one of the new challenges for a Supersonic Commercial Transport (SCT) is multi-point design for the four main design points: - supersonic cruise - transonic cruise - take-off and landing - transonic acceleration. KW - Drag Reduction KW - Pitching Moment KW - Leading Edge Vortex KW - Wave Drag KW - Variable Geometry Y1 - 1997 SN - 3-2118-2815-X U6 - https://doi.org/10.1007/978-3-7091-2658-5_4 SP - 53 EP - 67 PB - Springer CY - Wien [u.a.] ER - TY - CHAP A1 - Mertens, Josef T1 - Reduction of aerodynamic drag (RaWid)-Status after the first year of the program T2 - New results in numerical and experimental fluid mechanics. - (Notes on numerical fluid mechanics ; 60) N2 - The technology programme “Reduction of aerodynamic drag (RaWid)” for high speed aerodynamics at Daimler-Benz Aerospace Airbus is sponsered by the German ministry for education, research and technology since July 1, 1995. Connected to this industrial programme are the cooperation programmes “MEGAFLOW” under leadership of the DLR and “Transition” by the DFG, and several contributions by DLR and universities. The programme is oriented towards technologies required for a MEGALINER which gains momentum by the ambitious plans for a new large Airbus A3XX. In the first year new technological steps were undertaken in theory, design and experiment. Some critical steps were verified by wing designs checked in wind tunnel tests. KW - Wind Tunnel KW - Aerodynamic Drag KW - Flight Test KW - Friction Drag Y1 - 1997 SN - 3-528-06960-0 U6 - https://doi.org/10.1007/978-3-322-86573-1_2 SP - 7 EP - 14 PB - Vieweg CY - Braunschweig [u.a.] ER - TY - CHAP A1 - Funke, Harald A1 - Börner, Sebastian A1 - Hendrick, P. A1 - Recker, E. T1 - Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine T2 - Progress in Propulsion Physics. Vol. 2 Y1 - 2011 SN - 978-2-7598-0673-7 SP - 475 EP - 486 PB - EDP Sciences CY - Les Ulis ER - TY - CHAP A1 - Medlin, L. K. A1 - Barker, G. L. A. A1 - Baumann, Marcus A1 - Hayes, P. K. T1 - Molecular biology and systematics T2 - The Haptophyte Algae (Special volume / Systematics Association : 51) Y1 - 1994 SN - 0-19-857772-9 SP - 393 EP - 411 PB - Clarendon Press CY - Oxford ER - TY - CHAP A1 - Wendorff, Marion A1 - Eggert, Thorsten A1 - Pohl, Martina A1 - Dresen, Carola A1 - Müller, Michael A1 - Jaeger, Karl-Erich A1 - Sprenger, Georg A. A1 - Schürmann, Melanie A1 - Schürmann, Martin A1 - Johnen, Sandra A1 - Sprenger, Gerda A1 - Sahm, Hermann A1 - Inoue, Tomoyuki A1 - Schörken, Ulrich A1 - Breittaupt, Holger A1 - Frölich, Bettina A1 - Heim, Petra A1 - Iding, Hans A1 - Juchem, Bettina A1 - Siegert, Petra A1 - Kula, Maria-Regina A1 - Weckbecker, Andrea A1 - Hummel, Werner A1 - Fessner, Wolf-Dieter A1 - Elling, Lothar A1 - Wolberg, Michael A1 - Bode, Silke A1 - Feldmann, Ralf A1 - Geilenkirchen, Petra A1 - Schubert, Thomas A1 - Walter, Lydia A1 - Dünnwald, Thomas A1 - Demir, Ayhan S. A1 - Kolter-Jung, Doris A1 - Nitsche, Adam A1 - Dünkelmann, Pascal A1 - Cosp, Annabel A1 - Lingen, Bettina T1 - Catalytic asymmetric synthesis : section 2.2 T2 - Asymmetric synthesis with chemical and biological methods / ed. by Dieter Enders ... Y1 - 2007 SN - 978-3-527-31473-7 SP - 298 EP - 413 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Siegert, Petra A1 - Pohl, Martina A1 - Kneen, Malea M. A1 - Pogozheva, Irina D. A1 - Kenyon, George L. A1 - McLeish, Michael J. T1 - Exploring the substrate specificity of benzoylformate decarboxylase, pyruvate decarboxylase, and benzaldehyde lyase T2 - Thiamine : catalytic mechanisms in normal and disease states / ed. by Frank Jordan ... Y1 - 2004 SN - 0-8247-4062-9 SP - 275 EP - 290 PB - Dekker CY - New York, NY ER - TY - CHAP A1 - Buda, Aurel A1 - Schürmann, Volker A1 - Wollert, Jörg T1 - Wireless technologies in factory automation T2 - Factory automation / ed. by Javier Silvestre-Blanes Y1 - 2010 SN - 978-953-7619-42-8 SP - 29 EP - 50 PB - Intech CY - London ER -