TY - CHAP A1 - Stopforth, Riaan A1 - Davrajh, Shaniel A1 - Ferrein, Alexander T1 - South African robotics entity for a collaboration initiative T2 - Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), 2016 Y1 - 2017 SN - 978-1-5090-3335-5 U6 - https://doi.org/10.1109/RoboMech.2016.7813144 N1 - PRASA-RobMech, Nov. 30 2016-Dec. 2 2016, Stellenbosch, South Africa SP - 1 EP - 6 PB - IEEE ER - TY - CHAP A1 - Müller-Abdelrazeq, Sarah Luisa A1 - Brauner, Philipp A1 - Calero Valdez, André A1 - Jansen, Ulrich A1 - Platte, Laura A1 - Schaar, Anne-Kathrin A1 - Steuer-Dankert, Linda A1 - Zachow, Sebastian A1 - Schönefeld, Kathrin A1 - Haberstroh, Max A1 - Leicht-Scholten, Carmen A1 - Ziefle, Martina ED - Pather, Shaun T1 - Interdisciplinary cooperation management in research clusters: a review of twelve years. T2 - Proceedings of the 15th International Conference on Intellectual Capital, Knowledge Management & Organisational Learning N2 - As an interdisciplinary research network, the Cluster of Excellence “Integrative Production Technology for High-Wage Countries” (CoE) comprises of around 150 researchers. Their scientific background ranges from mechanical engineering and computer science to social sciences such as sociology and psychology. In addition to content- and methodbased challenges, the CoE’s employees are faced with heterogenic organizational cultures, different hierarchical levels, an imbalanced gender distribution, and a high employee fluctuation. The sub-project Scientific Cooperation Engineering 1 (CSP1) addresses the challenge of interdisciplinary cooperation and organizational learning and aims at fostering interdisciplinarity and its synergies as a source of innovation. Therefore, the project examines means of reaching an organizational development, ranging from temporal structures to a sustainable network in production technology. To achieve this aim, a broad range of means has been developed during the last twelve years: In addition to physical measures such as regular network events and trainings, virtual measures such as the Terminology App were focused. The app is an algorithmic analysis method for uncovering latent topic structures of publications of the CoE to highlight thematic intersections and synergy potentials. The detection and promotion of has been a vital and long known element in knowledge management. Furthermore, CSP1 focusses on project management and thus developed evaluation tools to measure and control the success of interdisciplinary cooperation. In addition to the cooperation fostering measures, CSP1 conducted studies about interdisciplinarity and diversity and their relationship with innovation. The scientific background of these means and the research results of CSP1 are outlined in this paper to offer approaches for successful interdisciplinary cooperation management. Y1 - 2018 SN - 978-1-912764-09-9 N1 - hosted by University of the Western Cape, South Africa 29-30 November 2018 SP - 216 EP - 224 PB - ACPIL ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen T1 - Social responsibility and innovation - Key competencies for engineers T2 - ICERI 2016: 9th International Conference of Education, Research and Innovation: Conference Proceedings : Seville (Spain), 14-16 November N2 - Engineers are of particular importance for the societies of tomorrow. The big social challenges society has to cope with in future, can only be mastered, if engineers link the development and innovation process closely with the requirements of people. As a result, in the frame of the innovation process engineers have to design and develop products for diverse users. Therefore, the consideration of diversity in this process is a core competence engineers should have. Implementing the consideration of diverse requirements into product design is also linked to the development of sustainable products and thus leads to social responsible research and development, the core concept formulated by the EU. For this reason, future engineers should be educated to look at the technical perspectives of a problem embedded in the related questions within societies they are developing their artefacts for. As a result, the aim of teaching engineering should be to prepare engineers for these requirements and to draw attention to the diverse needs in a globalized world. To match the competence profiles of future engineers to the global challenges and the resulting social responsibility, RWTH Aachen University, one of the leading technical universities in Germany, has established the bridging professorship “Gender and Diversity in Engineering” (GDI) which educates engineers with an interdisciplinary approach to expand engineering limits. The interdisciplinary teaching concept of the research group pursues an approach which imparts an application oriented Gender and Diversity expertise to future engineers. In the frame of an established teaching concept, which is a result of experiences and expertise of the research group, students gain theoretical knowledge about Gender and Diversity and learn how to transfer their knowledge into their later field of action. In the frame of the conference the institutional approach will be presented as well as the teaching concept which will be introduced by concrete course examples. KW - diversity KW - innovation KW - social responsible engineering KW - engineering education Y1 - 2016 SN - 978-84-617-5895-1 U6 - https://doi.org/10.21125/iceri.2016.0353 SN - 2340-1095 SP - 5967 EP - 5976 ER - TY - CHAP A1 - Konstantinidis, K. A1 - Dachwald, Bernd A1 - Ohndorf, A. A1 - Dykta, P. A1 - Voigt, K. A1 - Förstner, R. T1 - Enceladus explorer (ENEX): A lander mission to probe subglacial water pockets on Saturn's moon enceladus for life T2 - 64th International Astronautical Congress 2013 (IAC 2013) : Beijing, China, 23 - 27 September 2013. (Proceedings of the International Astronautical Congress, IAC ; 2) Y1 - 2013 SN - 978-1-62993-909-4 SP - 1340 EP - 1350 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Dachwald, Bernd A1 - Feldmann, Marco A1 - Espe, Clemens A1 - Plescher, Engelbert A1 - Konstantinidis, K. A1 - Forstner, R. T1 - Enceladus explorer - A maneuverable subsurface probe for autonomous navigation through deep ice T2 - 63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3) Y1 - 2012 SN - 978-1-62276-979-7 SP - 1756 EP - 1766 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Rendon, Carlos A1 - Schwager, Christian A1 - Ghiasi, Mona A1 - Schmitz, Pascal A1 - Bohang, Fakhri A1 - Chico Caminos, Ricardo Alexander A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming T2 - AIP Conference Proceedings N2 - A 16.77 kW thermal power bayonet-tube reactor for the mixed reforming of methane using solar energy has been designed and modeled. A test bench for the experimental tests has been installed at the Synlight facility in Juelich, Germany and has just been commissioned. This paper presents the solar-heated reactor design for a combined steam and dry reforming as well as a scaled-up process simulation of a solar reforming plant for methanol production. Solar power towers are capable of providing large amounts of heat to drive high-endothermic reactions, and their integration with thermochemical processes shows a promising future. In the designed bayonet-tube reactor, the conventional burner arrangement for the combustion of natural gas has been substituted by a continuous 930 °C hot air stream, provided by means of a solar heated air receiver, a ceramic thermal storage and an auxiliary firing system. Inside the solar-heated reactor, the heat is transferred by means of convective mechanism mainly; instead of radiation mechanism as typically prevailing in fossil-based industrial reforming processes. A scaled-up solar reforming plant of 50.5 MWth was designed and simulated in Dymola® and AspenPlus®. In comparison to a fossil-based industrial reforming process of the same thermal capacity, a solar reforming plant with thermal storage promises a reduction up to 57 % of annual natural gas consumption in regions with annual DNI-value of 2349 kWh/m2. The benchmark solar reforming plant contributes to a CO2 avoidance of approx. 79 kilotons per year. This facility can produce a nominal output of 734.4 t of synthesis gas and out of this 530 t of methanol a day. Y1 - 2020 U6 - https://doi.org/10.1063/5.0029974 N1 - SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, 1–4 October 2019, Daegu, South Korea IS - 2303 SP - 170012-1 EP - 170012-9 ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Gams, Matija A1 - Klinkel, Sven ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Effects of prior in-plane damage on out-of-plane response of masonry infills with openings T2 - The Third European Conference on Earthquake Engineering and Seismology N2 - Masonry infill walls are the most traditional enclosure system that is still widely used in RC frame buildings all over the world, particularly in seismic active regions. Although infill walls are usually neglected in seismic design, during an earthquake event they are subjected to in-plane and out-of-plane forces that can act separately or simultaneously. Since observations of damage to buildings after recent earthquakes showed detrimental effects of in-plane and out-of-plane load interaction on infill walls, the number of studies that focus on influence of in-plane damage on out-of-plane response has significantly increased. However, most of the xperimental campaigns have considered only solid infills and there is a lack of combined in-plane and out-of-plane experimental tests on masonry infills with openings, although windows and doors strongly affect seismic performance. In this paper, two types of experimental tests on infills with window openings are presented. The first is a pure out-of-plane test and the second one is a sequential in-plane and out-of-plane test aimed at investigating the effects of existing in-plane damage on outof-plane response. Additionally, findings from two tests with similar load procedure that were carried out on fully infilled RC frames in the scope of the same project are used for comparison. Test results clearly show that window opening increased vulnerability of infills to combined seismic actions and that prevention of damage in infills with openings is of the utmost importance for seismic safety. KW - Seismic loading KW - In-plane load KW - Out-of-plane load KW - Interaction KW - Window opening Y1 - 2022 SN - 978-973-100-533-1 N1 - 3ECEES - Third European Conference on Earthquake Engineering and Seismology, September 4 – September 9, 2022, Bucharest SP - 2747 EP - 2756 ER - TY - CHAP A1 - Gedle, Yibekal A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Schmitz, Pascal A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José A1 - Mahdi, Zahra A1 - Chico Caminos, Ricardo Alexander A1 - Dersch, Jürgen T1 - Analysis of an integrated CSP-PV hybrid power plant T2 - SOLARPACES 2020 N2 - In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] – [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution. KW - Hybrid energy system KW - Power plants KW - Electricity generation KW - Energy storage KW - Associated liquids Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086236 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Hallmann, Marcus A1 - Heidecker, Ansgar A1 - Schlotterer, Markus A1 - Dachwald, Bernd T1 - GTOC8: results and methods of team 15 DLR T2 - 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA N2 - This paper describes the results and methods used during the 8th Global Trajectory Optimization Competition (GTOC) of the DLR team. Trajectory optimization is crucial for most of the space missions and usually can be formulated as a global optimization problem. A lot of research has been done to different type of mission problems. The most demanding ones are low thrust transfers with e.g. gravity assist sequences. In that case the optimal control problem is combined with an integer problem. In most of the GTOCs we apply a filtering of the problem based on domain knowledge. Y1 - 2016 N1 - 26th AAS/AIAA Space Flight Mechanics Meeting, February 14-18, 2016, Napa, California, U.S.A. Napa, CA ER - TY - CHAP A1 - Niemueller, Tim A1 - Lakemeyer, Gerhard A1 - Ferrein, Alexander ED - Finzi, Alberto T1 - The RoboCup Logistics League as a Benchmark for Planning in Robotics T2 - Proceedings of the 3rd Workshop on Planning and Robotics (PlanRob-15); Jerusalem, Israel 7-8/6/2015 Y1 - 2015 SP - 63 EP - 68 ER -