TY - CHAP A1 - Zingsheim, Jonas A1 - Grimmer, Timo A1 - Ortner, Marion A1 - Schmaderer, Christoph A1 - Hauser, Christine A1 - Kotliar, Konstantin ED - Staat, Manfred ED - Erni, Daniel T1 - Recognition of subjects with mild cognitive impairment (MCI) by the use of retinal arterial vessels. T2 - 3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen Y1 - 2019 SN - 978-3-940402-22-6 U6 - https://doi.org/10.17185/duepublico/48750 SP - 36 EP - 37 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Blum, Yannik A1 - Albanna, Walid A1 - Benninghaus, Anne A1 - Kotliar, Konstantin ED - Staat, Manfred ED - Erni, Daniel T1 - Vasomotion in retinal vessels of patients presenting post hemorrhagic hydrocephalus following subarachnoid hemorrhage T2 - 3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen N2 - Clearance of blood components and fluid drainage play a crucial role in subarachnoid hemorrhage (SAH) and post hemorrhagic hydrocephalus (PHH). With the involvement of interstitial fluid (ISF) and cerebrospinal fluid (CSF), two pathways for the clearance of fluid and solutes in the brain are proposed. Starting at the level of capillaries, flow of ISF follows along the basement membranes in the walls of cerebral arteries out of the parenchyma to drain into the lymphatics and CSF [1]–[3]. Conversely, it is shown that CSF enters the parenchyma between glial and pial basement membranes of penetrating arteries [4]–[6]. Nevertheless, the involved structures and the contribution of either flow pathway to fluid balance between the subarachnoid space and interstitial space remains controversial. Low frequency oscillations in vascular tone are referred to as vasomotion and corresponding vasomotion waves are modeled as the driving force for flow of ISF out of the parenchyma [7]. Retinal vessel analysis (RVA) allows non-invasive measurement of retinal vessel vasomotion with respect to diameter changes [8]. Thus, the aim of the study is to investigate vasomotion in RVA signals of SAH and PHH patients. Y1 - 2019 SN - 978-3-940402-22-6 U6 - https://doi.org/10.17185/duepublico/48750 SP - 38 EP - 39 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Siebigteroth, Ines A1 - Kraft, Bodo A1 - Schmidts, Oliver A1 - Zündorf, Albert T1 - A Study on Improving Corpus Creation by Pair Annotation T2 - Proceedings of the Poster Session of the 2nd Conference on Language, Data and Knowledge (LDK-PS 2019) Y1 - 2019 SN - 1613-0073 SP - 40 EP - 44 ER - TY - CHAP A1 - Ketelhut, Maike A1 - Göll, Fabian A1 - Braunstein, Bjoern A1 - Albracht, Kirsten A1 - Abel, Dirk T1 - Iterative learning control of an industrial robot for neuromuscular training T2 - 2019 IEEE Conference on Control Technology and Applications N2 - Effective training requires high muscle forces potentially leading to training-induced injuries. Thus, continuous monitoring and controlling of the loadings applied to the musculoskeletal system along the motion trajectory is required. In this paper, a norm-optimal iterative learning control algorithm for the robot-assisted training is developed. The algorithm aims at minimizing the external knee joint moment, which is commonly used to quantify the loading of the medial compartment. To estimate the external knee joint moment, a musculoskeletal lower extremity model is implemented in OpenSim and coupled with a model of an industrial robot and a force plate mounted at its end-effector. The algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee. The results show that the algorithm is able to minimize the external knee joint moment in all three cases and converges after less than seven iterations. KW - Knee KW - Training KW - Load modeling KW - Force KW - Iterative learning control Y1 - 2019 SN - 978-1-7281-2767-5 (ePub) SN - 978-1-7281-2766-8 (USB) SN - 978-1-7281-2768-2 (PoD) U6 - https://doi.org/10.1109/CCTA.2019.8920659 N1 - 2019 IEEE Conference on Control Technology and Applications (CCTA) Hong Kong, China, August 19-21, 2019 PB - IEEE CY - New York ER - TY - CHAP A1 - Sildatke, Michael A1 - Karwanni, Hendrik A1 - Kraft, Bodo A1 - Schmidts, Oliver A1 - Zündorf, Albert T1 - Automated Software Quality Monitoring in Research Collaboration Projects T2 - ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops N2 - In collaborative research projects, both researchers and practitioners work together solving business-critical challenges. These projects often deal with ETL processes, in which humans extract information from non-machine-readable documents by hand. AI-based machine learning models can help to solve this problem. Since machine learning approaches are not deterministic, their quality of output may decrease over time. This fact leads to an overall quality loss of the application which embeds machine learning models. Hence, the software qualities in development and production may differ. Machine learning models are black boxes. That makes practitioners skeptical and increases the inhibition threshold for early productive use of research prototypes. Continuous monitoring of software quality in production offers an early response capability on quality loss and encourages the use of machine learning approaches. Furthermore, experts have to ensure that they integrate possible new inputs into the model training as quickly as possible. In this paper, we introduce an architecture pattern with a reference implementation that extends the concept of Metrics Driven Research Collaboration with an automated software quality monitoring in productive use and a possibility to auto-generate new test data coming from processed documents in production. Through automated monitoring of the software quality and auto-generated test data, this approach ensures that the software quality meets and keeps requested thresholds in productive use, even during further continuous deployment and changing input data. Y1 - 2020 U6 - https://doi.org/10.1145/3387940.3391478 N1 - ICSE '20: 42nd International Conference on Software Engineering, Seoul, Republic of Korea, 27 June 2020 - 19 July 2020 SP - 603 EP - 610 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Iomdina, Elena N. A1 - Kiseleva, Anna A. A1 - Kotliar, Konstantin A1 - Luzhnov, Petr V. T1 - Quantification of Choroidal Blood Flow Using the OCT-A System Based on Voxel Scan Processing T2 - Proceedings of the International Conference on Biomedical Innovations and Applications- BIA 2020 N2 - The paper presents a method for the quantitative assessment of choroidal blood flow using an OCT-A system. The developed technique for processing of OCT-A scans is divided into two stages. At the first stage, the identification of the boundaries in the selected portion was performed. At the second stage, each pixel mark on the selected layer was represented as a volume unit, a voxel, which characterizes the region of moving blood. Three geometric shapes were considered to represent the voxel. On the example of one OCT-A scan, this work presents a quantitative assessment of the blood flow index. A possible modification of two-stage algorithm based on voxel scan processing is presented. Y1 - 2020 SN - 978-1-7281-7073-2 U6 - https://doi.org/10.1109/BIA50171.2020.9244511 N1 - International Conference on Biomedical Innovations and Applications, Varna, Bulgaria, September 24 - 27, 2020 SP - 41 EP - 44 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Pohle-Fröhlich, Regina A1 - Dalitz, Christoph A1 - Richter, Charlotte A1 - Hahnen, Tobias A1 - Stäudle, Benjamin A1 - Albracht, Kirsten T1 - Estimation of muscle fascicle orientation in ultrasonic images T2 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5 N2 - We compare four different algorithms for automatically estimating the muscle fascicle angle from ultrasonic images: the vesselness filter, the Radon transform, the projection profile method and the gray level cooccurence matrix (GLCM). The algorithm results are compared to ground truth data generated by three different experts on 425 image frames from two videos recorded during different types of motion. The best agreement with the ground truth data was achieved by a combination of pre-processing with a vesselness filter and measuring the angle with the projection profile method. The robustness of the estimation is increased by applying the algorithms to subregions with high gradients and performing a LOESS fit through these estimates. Y1 - 2020 SN - 978-989-758-402-2 U6 - https://doi.org/10.5220/0008933900790086 N1 - 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISAPP 2020, Valletta, Malta SP - 79 EP - 86 PB - SciTePress CY - Setúbal, Portugal ER - TY - CHAP A1 - Schmidts, Oliver A1 - Kraft, Bodo A1 - Winkens, Marvin A1 - Zündorf, Albert T1 - Catalog integration of low-quality product data by attribute label ranking T2 - Proceedings of the 9th International Conference on Data Science, Technology and Applications DATA - Volume 1 N2 - The integration of product data from heterogeneous sources and manufacturers into a single catalog is often still a laborious, manual task. Especially small- and medium-sized enterprises face the challenge of timely integrating the data their business relies on to have an up-to-date product catalog, due to format specifications, low quality of data and the requirement of expert knowledge. Additionally, modern approaches to simplify catalog integration demand experience in machine learning, word vectorization, or semantic similarity that such enterprises do not have. Furthermore, most approaches struggle with low-quality data. We propose Attribute Label Ranking (ALR), an easy to understand and simple to adapt learning approach. ALR leverages a model trained on real-world integration data to identify the best possible schema mapping of previously unknown, proprietary, tabular format into a standardized catalog schema. Our approach predicts multiple labels for every attribute of an inpu t column. The whole column is taken into consideration to rank among these labels. We evaluate ALR regarding the correctness of predictions and compare the results on real-world data to state-of-the-art approaches. Additionally, we report findings during experiments and limitations of our approach. Y1 - 2020 SN - 978-989-758-440-4 U6 - https://doi.org/10.5220/0009831000900101 N1 - 9th International Conference on Data Science, Technologies and Applications (DATA 2020), 7 - 9 July 2020, online SP - 90 EP - 101 PB - SciTePress CY - Setúbal, Portugal ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Staat, Manfred T1 - FEM shakedown analysis of Kirchhoff-Love plates under uncertainty of strength T2 - Proceedings of UNCECOMP 2021 N2 - A new formulation to calculate the shakedown limit load of Kirchhoff plates under stochastic conditions of strength is developed. Direct structural reliability design by chance con-strained programming is based on the prescribed failure probabilities, which is an effective approach of stochastic programming if it can be formulated as an equivalent deterministic optimization problem. We restrict uncertainty to strength, the loading is still deterministic. A new formulation is derived in case of random strength with lognormal distribution. Upper bound and lower bound shakedown load factors are calculated simultaneously by a dual algorithm. Y1 - 2021 SN - 978-618-85072-6-5 U6 - https://doi.org/10.7712/120221.8041.19047 N1 - UNCECOMP 2021, 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering, streamed from Athens, Greece, 28–30 June 2021. SP - 323 EP - 338 ER - TY - CHAP A1 - Olderog, M. A1 - Mohr, P. A1 - Beging, Stefan A1 - Tsoumpas, C. A1 - Ziemons, Karl T1 - Simulation study on the role of tissue-scattered events in improving sensitivity for a compact time of flight compton positron emission tomograph T2 - 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) N2 - In positron emission tomography improving time, energy and spatial detector resolutions and using Compton kinematics introduces the possibility to reconstruct a radioactivity distribution image from scatter coincidences, thereby enhancing image quality. The number of single scattered coincidences alone is in the same order of magnitude as true coincidences. In this work, a compact Compton camera module based on monolithic scintillation material is investigated as a detector ring module. The detector interactions are simulated with Monte Carlo package GATE. The scattering angle inside the tissue is derived from the energy of the scattered photon, which results in a set of possible scattering trajectories or broken line of response. The Compton kinematics collimation reduces the number of solutions. Additionally, the time of flight information helps localize the position of the annihilation. One of the questions of this investigation is related to how the energy, spatial and temporal resolutions help confine the possible annihilation volume. A comparison of currently technically feasible detector resolutions (under laboratory conditions) demonstrates the influence on this annihilation volume and shows that energy and coincidence time resolution have a significant impact. An enhancement of the latter from 400 ps to 100 ps leads to a smaller annihilation volume of around 50%, while a change of the energy resolution in the absorber layer from 12% to 4.5% results in a reduction of 60%. The inclusion of single tissue-scattered data has the potential to increase the sensitivity of a scanner by a factor of 2 to 3 times. The concept can be further optimized and extended for multiple scatter coincidences and subsequently validated by a reconstruction algorithm. Y1 - 2021 SN - 978-1-7281-7693-2 U6 - https://doi.org/10.1109/NSS/MIC42677.2020.9507901 N1 - 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 31 Oct.-7 Nov. 2020, Boston, MA, USA PB - IEEE CY - New York, NY ER -