TY - CHAP A1 - Engels, Ralf T1 - MIKE URBAN FLOOD: Modellkopplung von Kanalnetzmodell und 2D Oberflächenmodell N2 - Dipl.-Ing. Ralf Engels - DHI Wasser und Umwelt GmbH, Syke. 24 S. (S. 70-93) Beitrag zum 1. Aachener Softwaretag in der Wasserwirtschaft <1,2007, Aachen> Einleitung [des Autors] Die hydrodynamische Kanalnetzmodellierung ist ein Standardwerkzeug für die Bemessung von Kanalnetzen. Neben der Berechnung der hydrologischen und hydraulischen Gegebenheiten in einem städtischen Einzugsgebiet gehören auch weiterführende Technologien mittlerweile zum Standard. So können alle steuerbaren Elemente eines Kanalnetzes dynamisch so optimiert werden, dass die Leistungsfähigkeit des Kanalnetzes zusätzlich gesteigert werden kann. Automatische Werkzeuge zur dynamischen hydraulischen Schmutzfrachtberechnung ermöglichen die Erweiterung der Steuerung – insbesondere von Entlastungsanlagen – im Hinblick auf die entlasteten Schmutzfrachten und geben darüber hinaus detaillierte Informationen für den Betrieb der Kläranlage. Weiterführende biologische Prozessmodellierungen ergänzen dieses Themenfeld. GIS Werkzeuge können bei der räumlich differenzierten Modellierung von Kanalnetzen wertvolle Dienste leisten. Die detaillierte Betrachtung einzelner Haltungsflächen in ihrem räumlichen Zusammenhang ist damit ebenso möglich wie eine komplette Verwaltung aller für die Kanalnetzmodellierung notwendigen Daten in einem übersichtlichen grafischen Menü. Die Grenzen der Kanalnetzmodellierung lagen in früheren Zeiten an dessen Rand. Detaillierte Informationen über die Wege des Wassers auf der Geländeoberfläche, an der Schnittstelle zu Vorflutern und in der Interaktion mit Grundwasser waren bisher nicht modelltechnisch bewertbar. Eine dynamische Kopplung verschiedener Modelle zur Darstellung aller relevanten hydraulischen Prozesse ermöglicht eine integrative Betrachtung aller möglichen Wege, die das Wasser in der Stadt nehmen kann (Mark & Djordjevic, 2006). Dieser Beitrag präsentiert den Stand der Technik für die integrierte Modellierung städtischer Überschwemmungen mit Hilfe der Modellkopplung von Oberflächenmodellen und Kanalnetzmodellen. KW - Bemessung KW - Kanalisation KW - Kanalnetzmodellierung KW - Kanalnetz Y1 - 2007 ER - TY - CHAP A1 - Herzog, Rudolf T1 - Das Oberflächenabflussmodell von Keser und die Grenzwertmethode : Die Abflussbildung im Vergleich. N2 - Dipl.-Ing. Rudolf Herzog , Rehm Software Berg / Ravensburg. 9 S. (S. 94-102). Beitrag zum 1. Aachener Softwaretag in der Wasserwirtschaft a1, 2007, Aachen>. Zusammenfassung [des Autors] Die grundlegenden Ansätze der beiden Modelle sind ähnlich. Der hauptsächliche Unterschied liegt darin, dass die Grenzwertmethode die Angabe einer Bodenart erfordert, die ihrerseits wieder Probleme verursachen kann. Es kann nicht davon ausgegangen werden, dass die Bodenarten homogen anliegen. Die ersatzweise Vorgabe einer für alle Einzugsgebiete einheitlichen Bodenart hilft da nicht wirklich weiter. Es stellt sich vielmehr die Frage, ob der zusätzliche Aufwand eine signifikante Verbesserung des Ereignisses zur Folge hat. Der Vorteil der Grenzwertmethode liegt auf der Hand: Die Parameterwahl ermöglicht eine flexible Steuerung des Modells, in die Abflussbildung kann differenziert eingegriffen werden. Das NA-Geschehen kann weitgehend kalibriert werden. Es ist allerdings auch zu bedenken, dass die Flexibilität des Modells risikobehaftet ist - die Abflussbildung kann nach Belieben beeinflusst werden. Fazit: Flexibel in der Anwendung, bei NA-Messung empfehlenswert. Im Allgemeinen geringere Abflussmengen als Keser. Die Blackbox von Keser ist zwar nicht steuerbar, entzieht sich damit aber auch Wissensdefiziten und Manipulationseinflüssen. Über Parameter und deren Auswirkungen muss nicht spekuliert werden. Wenn mehrere Personen mit dem Modell von Keser arbeiten, ergeben sich im Gegensatz zur Grenzwertmethode zwangsweise dieselben Ergebnisse - gleiche geometrische Oberflächendaten vorausgesetzt. Außerdem kommt Keser ohne die Bodenart aus. Fazit: Bei BFG >20%, einfache Handhabung, geringer Aufwand. Gegenüber der Grenzwertmethode (mittlere Verhältnisse) jedoch etwas höhere Abflüsse. Das Programmpaket HYKAS der Fa. Rehm Software ermöglicht u.a. den Nachweis von Kanalnetzen und bietet in diesem Zusammenhang beide Modellansätze zur Auswahl an. Der Programmanwender kann damit eine am Datenbestand bzw. an den Vorgaben des Auftraggebers ausgerichtete Modellauswahl treffen. Die realitätsnahe Ermittlung der Oberflächenabflüsse ist kompliziert. Weitere Unwegsamkeiten warten nach der Abflussbildung bei der Abflusskonzentration auf: Es ist z.B. die Festlegung der Fließlänge auf der Oberfläche erforderlich... Es ist noch ein weiter Weg bis zur Kläranlage. KW - Entwässerung KW - Abflussmessung KW - Abflussbildung KW - Oberflächenabflussmodell Y1 - 2007 ER - TY - CHAP A1 - Rohde, Raju M. T1 - Integrierte Implizite Kanalnetzberechnung mit BaSYS-HydroCAD N2 - Dr.-Ing. Raju M. Rohde , Dorsch Consult Wasser und Umwelt GmbH, München mit 32 Folien (S. 103-134). Beitrag zum 1. Aachener Softwaretag in der Wasserwirtschaft <1, 2007, Aachen>. Das System BaSYS.L.E.O. Ganglinien-Volumen-Methode Hydrodynamische Kanalnetzberechnung Hydraulische Objekte Hydrodynamische Schmutzfrachtberechnung KW - Kanalisation KW - Kanalnetz KW - Kanalnetzberechnung Y1 - 2007 ER - TY - CHAP A1 - Andorfer, Johann T1 - Parallelisierung und verteiltes Rechnen - Chancen für die Langzeitsimulation N2 - Dipl.Ing. Johann Andorfer , Tandler.com GmbH, Buch a. Erlbach. Abstract zum 1. Aachener Softwaretag in der Wasserwirtschaft <1,2007, Aachen>. 2 S. (S. 136-137) Eine nachhaltige Sicherung der Funktionalität und der ökologischen Verträglichkeit eines mittleren bis großen Kanalnetzes erfordert eine umfassende und detaillierte Modellierung in Raum und Zeit. Um den in den Richtlinien geforderten statistischen Anforderungen gerecht zu werden und die jährlichen Häufigkeiten, Mengen und Zeiträume der Belastungen erwartungstreu abschätzen zu können, ist es zielführend und notwendig, lange Zeiträume und die Gesamtheit der Einzugsgebiete möglichst detailliert zu betrachten. Die hydraulische Funktionalität und Sicherheit soll meistens mit Hilfe zeitsymmetrischer (hydrodynamischer) Verfahren nur durch Betrachtung von Modellregen, allenfalls Regenserien, sichergestellt werden. Für die Abschätzung der jährlich zu erwartenden Emissionen in unsere natürlichen Gewässer mit ihren Mengen, Frequenzen und Dauern werden normalerweise Langzeitsimulationen natürlicher Regenreihen über möglichst große Zeiträume mit zeitasymmetrischen (hydrologischen) Verfahren durchgeführt. Die betrachteten Kanalnetze werden zumeist vereinfacht (Grobnetze), um die Rechenzeiten erträglicher zu gestalten. Wünschenswert wäre jedoch eine allen Anforderungen gerecht werdende wirklichkeitsnahe Modellierung des gesamten Kanalnetzes in all seinen Details, Vermaschungen und Wechselwirkungen (Feinnetz) und dessen zeitsymmetrische und damit verlässliche Simulation mit langjährigen Regenreihen. Bereits vor 15 Jahren wurde im Hause Tandler begonnen, die Berechnungssoftware durch Parallelisierung auf symmetrische Multiprozessortechnologien auszurichten. In neuerer Zeit hält diese Technik durch die Mehrkernprozessoren in normalen Notebooks und PCs Einzug in die Ingenieurbüros und Abwasserbetriebe und sorgt schon für wesentliche Einsparungen an Rechenzeit. Doch erst durch die Kombination der Parallelisierung mit dem Prinzip des verteilten Rechnens (d.h. die Einbeziehung mehrerer PCs eines Netzwerkes in die Berechnung) erhält man die Chance ausreichend Rechenkapazität zur Verfügung zu stellen, um nicht nur eine einzelne Langzeitsimulation eines Feinnetzes durchzuführen, sondern sogar mehrere Sanierungsalternativen zu überprüfen. Die zukunftsweisenden Arbeiten von Dipl. Math. R. Tandler auf diesem Gebiet sind Thema dieses Vortrags. KW - Kanalisation KW - Parallelisierung KW - verteiltes Rechnen KW - Kanalnetzberechnung Y1 - 2007 ER - TY - CHAP A1 - Overkamp, Stefan T1 - Kombination von Desktop GIS, Geodatenbank und Internet-GIS am Beispiel von Manifold System 8.0, PostgreSQL 8.3 und Adobe Flex N2 - Dipl.-Ing. Stefan Overkamp - GISWORKS GbR, Velbert. 11 S. (S. 7-17). Beitrag zum 2. Aachener Softwaretag in der Wasserwirtschaft <2, 2009, Aachen> Aus der Gliederung: 1 Geoinformationssysteme 2 Anforderungen an eine kommunale Geodateninfrastruktur (GDI) 3 Komponenten einer GDI 3.1 Geodatenmanagement 3.2 Geodatenhaltung 3.3 High-End-GIS 3.4 intraGIS 4 GISWORKS 5 Weiterführende Informationen KW - Geoinformationssystem KW - Geodateninfrastruktur KW - Geodatenbank KW - Geodatenhaltung KW - Geoinformationen Y1 - 2009 ER - TY - CHAP A1 - Kniprath, Ludwig T1 - Einsatz von OpenSource-Software für geografische Informationssysteme am Beispiel des WVER N2 - Dipl.-Ing Ludwig Kniprath , Wasserverband Eifel-Rur, Düren. 6 S. (S. 18-23). Beitrag zum 2. Aachener Softwaretag in der Wasserwirtschaft <2, 2009, Aachen> 1. Einleitung 2. Datenbestände 3. GIS-Konzept des WVER 4. Umsetzung 5. Quellenangaben, Links KW - Geoinformationssystem KW - Geodatenbank KW - Geodatenhaltung KW - Geoinformationen Y1 - 2009 ER - TY - CHAP A1 - Heisterkamp, Reinhold T1 - Vom Desktop-GIS zur mobilen 3D-Lösung N2 - Dipl.-Ing. Reinhold Heisterkamp - GDS Geo Daten Service GmbH, Borken (Westf.). 8 S. (S. 24-31). Beitrag zum 2. Aachener Softwaretag in der Wasserwirtschaft <2, 2009, Aachen>. Einleitung Web-GIS Leistungsmerkmale von aktuellen Web-GIS Mobile GIS-Lösungen Dreidimensionale GIS-Lösungen KW - Geoinformationssystem KW - Geodatenbank KW - Geodatenhaltung KW - Geoinformationen Y1 - 2009 ER - TY - CHAP A1 - Hoffmann, Marc T1 - Analyse und Visualisierung von zeitbezogenen Daten im Raum – Beispiele aus Hydrologie und Wasserwirtschaft N2 - Dipl.-Ing Marc Hoffmann - Kisters AG, Aachen. 13 S. (S. 32-44). Beitrag zum 2. Aachener Softwaretag in der Wasserwirtschaft <2, 2009, Aachen> Zahlreiche Folien, Grafiken und Praxisbeispiele KW - Visualisierung KW - Hydrologie KW - Wasserwirtschaft Y1 - 2009 ER - TY - CHAP A1 - Stoschek, Oliver A1 - Potthoff, Michael A1 - Petersen, Ole Svenstrup A1 - Larsen, Ole A1 - Engels, Ralf T1 - Ökologische Modellierung von Gewässergüteparametern an der Tide-Elbe N2 - Dr.-Ing. Oliver Stoschek [u.a.] DHI Wasser und Umwelt GmbH, Syke. 14 S. (S. 45-58). Beitrag zum 2. Aachener Softwaretag in der Wasserwirtschaft <2, 2009, Aachen> Ökologische Modelle zur Berechnung der Temperaturveränderung und den Einfluss von Kühlwasser auf die Wassertemperatur der Elbe. Die vorgelegte Arbeit wurde beauftragt und unterstützt von der ARGE Elbe im Zuge der Neuauflage des Wärmelastplans Elbe. KW - Wassergüte KW - Wasserwirtschaft KW - Wärmelastplan Y1 - 2009 ER - TY - CHAP A1 - Huber, Brigitte A1 - Demny, Gerd T1 - Mischwassereinleitungen in Gewässer nach BWK Merkblatt M3 - Vorteile des detaillierten Nachweises N2 - Dipl.-Ing. Brigitte Huber und Dr.-Ing. Gerd Demny - Wasserverband Eifel Rur, Düren. 16 Seiten ( S. 59-74). Beitrag zum 2. Aachener Softwaretag in der Wasserwirtschaft <2, 2009, Aachen> Zusammenfassung [der Autoren] Für das städtisch geprägte Einzugsgebiet des Broicher Baches sind ein vereinfachter und ein detaillierter Nachweis nach BWK-M3 durchgeführt worden. Dabei zeigt sich, dass die Methodik des vereinfachten Nachweises nicht geeignet ist, um eine realitätsnahe Abbildung der einleitungsgeprägten Abflüsse des Gewässers zu erhalten. Dies ist insbesondere auf die Vernachlässigung von Wellentranslation und -retention im Gerinne zurückzuführen. Die dadurch entstehende Fehleinschätzung der Abflussverhältnisse versperrt den Blick auf eine situationsgerechte Maßnahmenplanung. Der mit Hilfe eines NA-Modells geführte detaillierte Nachweis ist zwar in der Erstellung aufwändiger, zeichnet aber ein reales Bild der Abflusserhöhung durch Einleitungen. Mit Hilfe des Modells können die wesentlichen Einflüsse schnell lokalisiert und zielführende Maßnahmenvarianten identifiziert werden. In dem hier vorgestellten Beispiel des Broicher Baches können die ursprünglich identifizierten acht Maßnahmen auf eine reduziert werden. Das Gesamtvolumen der erforderlichen Rückhaltungen wird um die Hälfte verringert. Der Vergleich beider Nachweismethoden legt nach Ansicht der Autoren nahe, den vereinfachten Nachweis höchstens für eine erste Einschätzung des Maßnahmenbedarfs anzuwenden. Die Maßnahmenidentifikation und -dimensionierung sollte grundsätzlich mit der detaillierten Nachweismethode durchgeführt werden, die auf einem entsprechenden NA-Modell basiert. Dies gilt insbesondere für Gewässerstrecken, deren Abfluss durch mehrere, hintereinander liegende Einleitungsstellen geprägt ist. KW - Fließgewässer KW - Mischwasser KW - Mischwassereinleitung Y1 - 2009 ER -