TY - JOUR A1 - Mikucki, Jill Ann A1 - Schuler, C. G. A1 - Digel, Ilya A1 - Kowalski, Julia A1 - Tuttle, M. J. A1 - Chua, Michelle A1 - Davis, R. A1 - Purcell, Alicia A1 - Ghosh, D. A1 - Francke, G. A1 - Feldmann, M. A1 - Espe, C. A1 - Heinen, Dirk A1 - Dachwald, Bernd A1 - Clemens, Joachim A1 - Lyons, W. B. A1 - Tulaczyk, S. T1 - Field-Based planetary protection operations for melt probes: validation of clean access into the blood falls, antarctica, englacial ecosystem JF - Astrobiology N2 - Subglacial environments on Earth offer important analogs to Ocean World targets in our solar system. These unique microbial ecosystems remain understudied due to the challenges of access through thick glacial ice (tens to hundreds of meters). Additionally, sub-ice collections must be conducted in a clean manner to ensure sample integrity for downstream microbiological and geochemical analyses. We describe the field-based cleaning of a melt probe that was used to collect brine samples from within a glacier conduit at Blood Falls, Antarctica, for geomicrobiological studies. We used a thermoelectric melting probe called the IceMole that was designed to be minimally invasive in that the logistical requirements in support of drilling operations were small and the probe could be cleaned, even in a remote field setting, so as to minimize potential contamination. In our study, the exterior bioburden on the IceMole was reduced to levels measured in most clean rooms, and below that of the ice surrounding our sampling target. Potential microbial contaminants were identified during the cleaning process; however, very few were detected in the final englacial sample collected with the IceMole and were present in extremely low abundances (∼0.063% of 16S rRNA gene amplicon sequences). This cleaning protocol can help minimize contamination when working in remote field locations, support microbiological sampling of terrestrial subglacial environments using melting probes, and help inform planetary protection challenges for Ocean World analog mission concepts. Y1 - 2023 U6 - https://doi.org/10.1089/ast.2021.0102 SN - 1557-8070 (online) SN - 153-1074 (print) VL - 23 IS - 11 SP - 1165 EP - 1178 PB - Liebert CY - New York, NY ER - TY - JOUR A1 - Grajewski, Matthias A1 - Kleefeld, Andreas T1 - Detecting and approximating decision boundaries in low-dimensional spaces JF - Numerical Algorithms N2 - A method for detecting and approximating fault lines or surfaces, respectively, or decision curves in two and three dimensions with guaranteed accuracy is presented. Reformulated as a classification problem, our method starts from a set of scattered points along with the corresponding classification algorithm to construct a representation of a decision curve by points with prescribed maximal distance to the true decision curve. Hereby, our algorithm ensures that the representing point set covers the decision curve in its entire extent and features local refinement based on the geometric properties of the decision curve. We demonstrate applications of our method to problems related to the detection of faults, to multi-criteria decision aid and, in combination with Kirsch’s factorization method, to solving an inverse acoustic scattering problem. In all applications we considered in this work, our method requires significantly less pointwise classifications than previously employed algorithms. KW - MCDA KW - Inverse scattering problem KW - Fault approximation KW - Fault detection Y1 - 2023 SN - 1572-9265 N1 - Corresponding author: Matthias Grajewski VL - 93 IS - 4 PB - Springer Science+Business Media CY - Dordrecht ER -