TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel Bernhard T1 - Vectrino profiler spatial filtering for shear flows based on the mean velocity gradient equation JF - Journal of Hydraulic Engineering N2 - A new methodology is proposed to spatially filter acoustic Doppler velocimetry data from a Vectrino profiler based on the differential mean velocity equation. Lower and upper bounds are formulated in terms of physically based flow constraints. Practical implementation is discussed, and its application is tested against data gathered from an open-channel flow over a stepped macroroughness surface. The method has proven to detect outliers occurring all over the distance range sampled by the Vectrino profiler and has shown to remain applicable out of the region of validity of the velocity gradient equation. Finally, a statistical analysis suggests that physically obtained bounds are asymptotically representative. Y1 - 2018 U6 - https://doi.org/10.1061/(ASCE)HY.1943-7900.0001485 SN - 0733-9429 N1 - Article number 04018037 VL - 144 IS - 7 PB - ASCE CY - Reston, Va. ER - TY - JOUR A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - ERIKA—Early Robotics Introduction at Kindergarten Age JF - Multimodal Technologies Interact N2 - In this work, we report on our attempt to design and implement an early introduction to basic robotics principles for children at kindergarten age. One of the main challenges of this effort is to explain complex robotics contents in a way that pre-school children could follow the basic principles and ideas using examples from their world of experience. What sets apart our effort from other work is that part of the lecturing is actually done by a robot itself and that a quiz at the end of the lesson is done using robots as well. The humanoid robot Pepper from Softbank, which is a great platform for human–robot interaction experiments, was used to present a lecture on robotics by reading out the contents to the children making use of its speech synthesis capability. A quiz in a Runaround-game-show style after the lecture activated the children to recap the contents they acquired about how mobile robots work in principle. In this quiz, two LEGO Mindstorm EV3 robots were used to implement a strongly interactive scenario. Besides the thrill of being exposed to a mobile robot that would also react to the children, they were very excited and at the same time very concentrated. We got very positive feedback from the children as well as from their educators. To the best of our knowledge, this is one of only few attempts to use a robot like Pepper not as a tele-teaching tool, but as the teacher itself in order to engage pre-school children with complex robotics contents. Y1 - 2018 U6 - https://doi.org/10.3390/mti2040064 SN - 2414-4088 VL - 2 IS - 4 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schwabedal, Justus T. C. A1 - Sippel, Daniel A1 - Brandt, Moritz D. A1 - Bialonski, Stephan T1 - Automated Classification of Sleep Stages and EEG Artifacts in Mice with Deep Learning N2 - Sleep scoring is a necessary and time-consuming task in sleep studies. In animal models (such as mice) or in humans, automating this tedious process promises to facilitate long-term studies and to promote sleep biology as a data-driven f ield. We introduce a deep neural network model that is able to predict different states of consciousness (Wake, Non-REM, REM) in mice from EEG and EMG recordings with excellent scoring results for out-of-sample data. Predictions are made on epochs of 4 seconds length, and epochs are classified as artifactfree or not. The model architecture draws on recent advances in deep learning and in convolutional neural networks research. In contrast to previous approaches towards automated sleep scoring, our model does not rely on manually defined features of the data but learns predictive features automatically. We expect deep learning models like ours to become widely applied in different fields, automating many repetitive cognitive tasks that were previously difficult to tackle. Y1 - 2018 U6 - https://doi.org/10.48550/arXiv.1809.08443 ER - TY - JOUR A1 - König, Johannes Alexander A1 - Wolf, Martin R. T1 - GHOST: An Evaluated Competence Developing Game for Cybersecurity Awareness Training JF - International Journal on Advances in Security N2 - To train end users how to interact with digital systems is indispensable to ensure a strong computer security. 'Competence Developing Game'-based approaches are particularly suitable for this purpose because of their motivation-and simulation-aspects. In this paper the Competence Developing Game 'GHOST' for cybersecurity awareness trainings and its underlying patterns are described. Accordingly, requirements for an 'Competence Developing Game' based training are discussed. Based on these requirements it is shown how a game can fulfill these requirements. A supplementary game interaction design and a corresponding evaluation study is shown. The combination of training requirements and interaction design is used to create a 'Competence Developing Game'-based training concept. A part of these concept is implemented into a playable prototype that serves around one hour of play respectively training time. This prototype is used to perform an evaluation of the game and training aspects of the awareness training. Thereby, the quality of the game aspect and the effectiveness of the training aspect are shown. Y1 - 2018 SN - 1942-2636 VL - 11 IS - 3 & 4 SP - 274 EP - 287 PB - IARIA Journals ER - TY - JOUR A1 - Molinnus, Denise A1 - Hardt, Gabriel A1 - Siegert, Petra A1 - Willenberg, Holger S. A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Detection of Adrenaline in Blood Plasma as Biomarker for Adrenal Venous Sampling JF - Electroanalysis N2 - An amperometric bi-enzyme biosensor based on substrate recycling principle for the amplification of the sensor signal has been developed for the detection of adrenaline in blood. Adrenaline can be used as biomarker verifying successful adrenal venous sampling procedure. The adrenaline biosensor has been realized via modification of a galvanic oxygen sensor with a bi-enzyme membrane combining a genetically modified laccase and a pyrroloquinoline quinone-dependent glucose dehydrogenase. The measurement conditions such as pH value and temperature were optimized to enhance the sensor performance. A high sensitivity and a low detection limit of about 0.5–1 nM adrenaline have been achieved in phosphate buffer at pH 7.4, relevant for measurements in blood samples. The sensitivity of the biosensor to other catecholamines such as noradrenaline, dopamine and dobutamine has been studied. Finally, the sensor has been successfully applied for the detection of adrenaline in human blood plasma. Y1 - 2018 U6 - https://doi.org/10.1002/elan.201800026 SN - 1521-4109 VL - 30 IS - 5 SP - 937 EP - 942 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Gomez, Francisco A1 - Bill, C. T1 - On the flight performance impact of landing gear drag reduction methods for unmanned air vehicles JF - Deutscher Luft- und Raumfahrtkongress 2018 N2 - The flight performance impact of three different landing gear configurations on a small, fixed-wing UAV is analyzed with a combination of RANS CFD calculations and an incremental flight performance algorithm. A standard fixed landing gear configuration is taken as a baseline, while the influence of retracting the landing gear or applying streamlined fairings is investigated. A retraction leads to a significant parasite drag reduction, while also fairings promise large savings. The increase in lift-to-drag ratio is reduced at high lift coefficients due to the influence of induced drag. All configurations are tested on three different design missions with an incremental flight performance algorithm. A trade-off study is performed using the retracted or faired landing gear's weight increase as a variable. The analysis reveals only small mission performance gains as the aerodynamic improvements are negated by weight penalties. A new workflow for decision-making is presented that allows to estimate if a change in landing gear configuration is beneficial for a small UAV. Y1 - 2018 U6 - https://doi.org/10.25967/480058 PB - DGLR CY - Bonn ER - TY - JOUR A1 - Molinnus, Denise A1 - Hardt, G. A1 - Käver, L. A1 - Willenberg, H.S. A1 - Kröger, J.-C. A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Chip-based biosensor for the detection of low adrenaline concentrations to support adrenal venous sampling JF - Sensor and Actuators B: Chemical N2 - A chip-based amperometric biosensor referring on using the bioelectrocatalytical amplification principle for the detection of low adrenaline concentrations is presented. The adrenaline biosensor has been prepared by modification of a platinum thin-film electrode with an enzyme membrane containing the pyrroloquinoline quinone-dependent glucose dehydrogenase and glutaraldehyde. Measuring conditions such as temperature, pH value, and glucose concentration have been optimized to achieve a high sensitivity and a low detection limit of about 1 nM adrenaline measured in phosphate buffer at neutral pH value. The response of the biosensor to different catecholamines has also been proven. Long-term stability of the adrenaline biosensor has been studied over 10 days. In addition, the biosensor has been successfully applied for adrenaline detection in human blood plasma for future biomedical applications. Furthermore, preliminary experiments have been carried to detect the adrenaline-concentration difference measured in peripheral blood and adrenal venous blood, representing the adrenal vein sampling procedure of a physician. Y1 - 2018 U6 - https://doi.org/10.1016/j.snb.2018.05.136 SN - 0925-4005 VL - 272 SP - 21 EP - 27 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs JF - CEAS Aeronautical Journal N2 - One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost–benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters. Y1 - 2018 U6 - https://doi.org/10.1007/s13272-018-0352-x SN - 1869-5582 print SN - 1869-5590 online VL - 10 IS - 3 SP - 843 PB - Springer ER - TY - JOUR A1 - Hüning, Felix A1 - Heuermann, Holger A1 - Wache, Franz-Josef A1 - Jajo, Rami Audisho T1 - A new wireless sensor interface using dual-mode radio JF - Journal of Sensors and Sensor Systems : JSSS N2 - The integration of sensors is one of the major tasks in embedded, control and “internet of things” (IoT) applications. For the integration mainly digital interfaces are used, starting from rather simple pulse-width modulation (PWM) interface to more complex interfaces like CAN (Controller Area Network). Even though these interfaces are tethered by definition, a wireless realization is highly welcome in many applications to reduce cable and connector cost, increase the flexibility and realize new emerging applications like wireless control systems. Currently used wireless solutions like Bluetooth, WirelessHART or IO-Link Wireless use dedicated communication standards and corresponding higher protocol layers to realize the wireless communication. Due to the complexity of the communication and the protocol handling, additional latency and jitter are introduced to the data communication that can meet the requirements for many applications. Even though tunnelling of other bus data like CAN data is generally also possible the latency and jitter prevent the tunnelling from being transparent for the bus system. Therefore a new basic technology based on dual-mode radio is used to realize a wireless communication on the physical layer only, enabling a reliable and real-time data transfer. As this system operates on the physical layer it is independent of any higher layers of the OSI (open systems interconnection) model. Hence it can be used for several different communication systems to replace the tethered physical layer. A prototype is developed and tested for real-time wireless PWM, SENT (single-edge nibble transmission) and CAN data transfer with very low latency and jitter. Y1 - 2018 U6 - https://doi.org/10.5194/jsss-7-507-2018 VL - Volume 7 IS - 2 SP - 507 EP - 515 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Harris, Isaac A1 - Kleefeld, Andreas T1 - The inverse scattering problem for a conductive boundary condition and transmission eigenvalues JF - Applicable Analysis N2 - In this paper, we consider the inverse scattering problem associated with an inhomogeneous media with a conductive boundary. In particular, we are interested in two problems that arise from this inverse problem: the inverse conductivity problem and the corresponding interior transmission eigenvalue problem. The inverse conductivity problem is to recover the conductive boundary parameter from the measured scattering data. We prove that the measured scatted data uniquely determine the conductivity parameter as well as describe a direct algorithm to recover the conductivity. The interior transmission eigenvalue problem is an eigenvalue problem associated with the inverse scattering of such materials. We investigate the convergence of the eigenvalues as the conductivity parameter tends to zero as well as prove existence and discreteness for the case of an absorbing media. Lastly, several numerical and analytical results support the theory and we show that the inside–outside duality method can be used to reconstruct the interior conductive eigenvalues. KW - Transmission eigenvalues KW - Conductive boundary condition KW - Inverse scattering Y1 - 2018 U6 - https://doi.org/10.1080/00036811.2018.1504028 SN - 1563-504X VL - 99 IS - 3 SP - 508 EP - 529 PB - Taylor & Francis CY - London ER -