TY - CHAP A1 - Pauksztat, Anja A1 - Kuperjans, Isabel A1 - de Hesselle, M. T1 - Referenzformeln für Energiebedarf und CO2-Emissionen in der Glasindustrie T2 - Energieeffizienz - Chancen für die Zukunft : Tagung Berlin, 14. und 15. November 2006. - (VDI-Berichte ; 1951) Y1 - 2006 SN - 3-18-091951-5 SP - 179 EP - 190 PB - VDI-Verl. CY - Düsseldorf ET - Nichtred. Ms.-Dr. ER - TY - CHAP A1 - Kruska, Martin A1 - Kuperjans, Isabel T1 - Análisis Thermodinámicos : [Capítulo 3.3] T2 - Uso racional de energía : eficiencia energética y energías renovables. - (Manual para consultores y expertos) Y1 - 1999 SP - 3.3-1 EP - 3.3-15 PB - Ministerio de Energía y Minas CY - Lima ER - TY - THES A1 - Kuperjans, Isabel T1 - Verfahren zur Analyse und Bewertung industrieller Energieanlagen Y1 - 2000 N1 - Aachen, Techn. Hochsch., Diss., 2000 CY - Aachen ER - TY - JOUR A1 - Kuperjans, Isabel A1 - Starke, M. A1 - Esser, J. A1 - Meyer, J. A1 - Donner, O. T1 - Analyse und Konzeption von Energieanlagen unter ökologischen, wirtschaftlichen und technischen Gesichtspunkten JF - WLB : Umwelttechnik für Industrie und Kommune Y1 - 2000 SN - 0341-2679 VL - 44 IS - 11/12 SP - 26 EP - 29 ER - TY - JOUR A1 - Cheenakula, Dheeraja A1 - Paulsen, Svea A1 - Ott, Fabian A1 - Grömping, Markus T1 - Operational window of a deammonifying sludge for mainstream application in a municipal wastewater treatment plant JF - Water and Environment Journal N2 - The present work aimed to study the mainstream feasibility of the deammonifying sludge of side stream of municipal wastewater treatment plant (MWWTP) in Kaster, Germany. For this purpose, the deammonifying sludge available at the side stream was investigated for nitrogen (N) removal with respect to the operational factors temperature (15–30°C), pH value (6.0–8.0) and chemical oxygen demand (COD)/N ratio (≤1.5–6.0). The highest and lowest N-removal rates of 0.13 and 0.045 kg/(m³ d) are achieved at 30 and 15°C, respectively. Different conditions of pH and COD/N ratios in the SBRs of Partial nitritation/anammox (PN/A) significantly influenced both the metabolic processes and associated N-removal rates. The scientific insights gained from the current work signifies the possibility of mainstream PN/A at WWTPs. The current study forms a solid basis of operational window for the upcoming semi-technical trails to be conducted prior to the full-scale mainstream PN/A at WWTP Kaster and WWTPs globally. KW - Anammox KW - Mainstream KW - Nitrogen removal KW - Partial nitritation KW - Wastewater Y1 - 2023 U6 - https://doi.org/10.1111/wej.12898 SN - 1747-6593 N1 - Corresponding author: Dheeraja Cheenakula VL - 38 IS - 1 SP - 59 EP - 70 PB - Wiley CY - Chichester ER - TY - JOUR A1 - Hoffstadt, Kevin A1 - Pohen, Gino D. A1 - Dicke, Max D. A1 - Paulsen, Svea A1 - Krafft, Simone A1 - Zang, Joachim W. A1 - Fonseca-Zang, Warde A. da A1 - Leite, Athaydes A1 - Kuperjans, Isabel T1 - Challenges and prospects of biogas from energy cane as supplement to bioethanol production JF - Agronomy N2 - Innovative breeds of sugar cane yield up to 2.5 times as much organic matter as conventional breeds, resulting in a great potential for biogas production. The use of biogas production as a complementary solution to conventional and second-generation ethanol production in Brazil may increase the energy produced per hectare in the sugarcane sector. Herein, it was demonstrated that through ensiling, energy cane can be conserved for six months; the stored cane can then be fed into a continuous biogas process. This approach is necessary to achieve year-round biogas production at an industrial scale. Batch tests revealed specific biogas potentials between 400 and 600 LN/kgVS for both the ensiled and non-ensiled energy cane, and the specific biogas potential of a continuous biogas process fed with ensiled energy cane was in the same range. Peak biogas losses through ensiling of up to 27% after six months were observed. Finally, compared with second-generation ethanol production using energy cane, the results indicated that biogas production from energy cane may lead to higher energy yields per hectare, with an average energy yield of up to 162 MWh/ha. Finally, the Farm²CBG concept is introduced, showing an approach for decentralized biogas production. Y1 - 2020 U6 - https://doi.org/10.3390/agronomy10060821 SN - 2073-4395 VL - 10 IS - 6 PB - MDPI CY - Basel ER - TY - CHAP A1 - Kreyer, Jörg A1 - Esch, Thomas T1 - Simulation Tool for Predictive Control Strategies for an ORCSystem in Heavy Duty Vehicles T2 - European GT Conference 2017 N2 - Scientific questions - How can a non-stationary heat offering in the commercial vehicle be used to reduce fuel consumption? - Which potentials offer route and environmental information among with predicted speed and load trajectories to increase the efficiency of a ORC-System? Methods - Desktop bound holistic simulation model for a heavy duty truck incl. an ORC System - Prediction of massflows, temperatures and mixture quality (AFR) of exhaust gas Y1 - 2017 N1 - European GT Conference 2017, 9.-10. Oktober 2017, Frankfurt a.M. ER - TY - JOUR A1 - Kuperjans, Isabel T1 - Gute Planung ist alles : Energieeffizienz in der Pharmaproduktion JF - Pharma + Food Y1 - 2011 SN - 1434-8942 VL - 2011 IS - 2 SP - 8 EP - 10 PB - Hüthig CY - Heidelberg ER - TY - JOUR A1 - Block, Simon A1 - Viebahn, Peter A1 - Jungbluth, Christian T1 - Analysing direct air capture for enabling negative emissions in Germany: an assessment of the resource requirements and costs of a potential rollout in 2045 JF - Frontiers in Climate N2 - Direct air capture (DAC) combined with subsequent storage (DACCS) is discussed as one promising carbon dioxide removal option. The aim of this paper is to analyse and comparatively classify the resource consumption (land use, renewable energy and water) and costs of possible DAC implementation pathways for Germany. The paths are based on a selected, existing climate neutrality scenario that requires the removal of 20 Mt of carbon dioxide (CO2) per year by DACCS from 2045. The analysis focuses on the so-called “low-temperature” DAC process, which might be more advantageous for Germany than the “high-temperature” one. In four case studies, we examine potential sites in northern, central and southern Germany, thereby using the most suitable renewable energies for electricity and heat generation. We show that the deployment of DAC results in large-scale land use and high energy needs. The land use in the range of 167–353 km2 results mainly from the area required for renewable energy generation. The total electrical energy demand of 14.4 TWh per year, of which 46% is needed to operate heat pumps to supply the heat demand of the DAC process, corresponds to around 1.4% of Germany's envisaged electricity demand in 2045. 20 Mt of water are provided yearly, corresponding to 40% of the city of Cologne‘s water demand (1.1 million inhabitants). The capture of CO2 (DAC) incurs levelised costs of 125–138 EUR per tonne of CO2, whereby the provision of the required energy via photovoltaics in southern Germany represents the lowest value of the four case studies. This does not include the costs associated with balancing its volatility. Taking into account transporting the CO2 via pipeline to the port of Wilhelmshaven, followed by transporting and sequestering the CO2 in geological storage sites in the Norwegian North Sea (DACCS), the levelised costs increase to 161–176 EUR/tCO2. Due to the longer transport distances from southern and central Germany, a northern German site using wind turbines would be the most favourable. KW - rollout KW - economics KW - Germany KW - negative emissions KW - carbon dioxide removal KW - climate neutrality KW - DAC KW - direct air capture Y1 - 2024 U6 - https://doi.org/10.3389/fclim.2024.1353939 SN - 2624-9553 VL - 6 PB - Frontiers CY - Lausanne ER - TY - CHAP A1 - Kuperjans, Isabel A1 - Terpitz, J. A1 - Terruhn, H. A1 - Wilhelm, H.-G. T1 - Simulation zur Konzeption und Analyse betrieblicher und kommunaler Nahwärmesysteme T2 - Betriebliches Energiemanagement : Tagung Cottbus, 30. und 31. März 1999. - (VDI-Berichte ; 1462) Y1 - 1999 SN - 3-18-091462-9 SP - 195 EP - 204 PB - VDI-Verl. CY - Düsseldorf ER -