TY - JOUR A1 - Falkenberg, Fabian A1 - Voß, Leonie A1 - Bott, Michael A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - New robust subtilisins from halotolerant and halophilic Bacillaceae JF - Applied Microbiology and Biotechnology N2 - The aim of the present study was the characterisation of three true subtilisins and one phylogenetically intermediate subtilisin from halotolerant and halophilic microorganisms. Considering the currently growing enzyme market for efficient and novel biocatalysts, data mining is a promising source for novel, as yet uncharacterised enzymes, especially from halophilic or halotolerant Bacillaceae, which offer great potential to meet industrial needs. Both halophilic bacteria Pontibacillus marinus DSM 16465ᵀ and Alkalibacillus haloalkaliphilus DSM 5271ᵀ and both halotolerant bacteria Metabacillus indicus DSM 16189 and Litchfieldia alkalitelluris DSM 16976ᵀ served as a source for the four new subtilisins SPPM, SPAH, SPMI and SPLA. The protease genes were cloned and expressed in Bacillus subtilis DB104. Purification to apparent homogeneity was achieved by ethanol precipitation, desalting and ion-exchange chromatography. Enzyme activity could be observed between pH 5.0–12.0 with an optimum for SPPM, SPMI and SPLA around pH 9.0 and for SPAH at pH 10.0. The optimal temperature for SPMI and SPLA was 70 °C and for SPPM and SPAH 55 °C and 50 °C, respectively. All proteases showed high stability towards 5% (w/v) SDS and were active even at NaCl concentrations of 5 M. The four proteases demonstrate potential for future biotechnological applications. KW - Biotechnological application KW - Bacillaceae KW - Subtilisin KW - Subtilases KW - Halotolerant protease Y1 - 2023 U6 - http://dx.doi.org/10.1007/s00253-023-12553-w SN - 1432-0614 N1 - Corresponding author: Petra Siegert VL - 107 SP - 3939 EP - 3954 PB - Springer Nature CY - Berlin ER - TY - JOUR A1 - Falkenberg, Fabian A1 - Kohn, Sophie A1 - Bott, Michael A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - Biochemical characterisation of a novel broad pH spectrum subtilisin from Fictibacillus arsenicus DSM 15822ᵀ JF - FEBS Open Bio N2 - Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822ᵀ (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5% (w/v) SDS and 5% H₂O₂ (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H₂O₂, suggest it has potential for biotechnological applications. KW - Bacillaceae KW - Biotechnological application KW - Broad pH spectrum KW - Subtilases KW - Subtilisin Y1 - 2023 U6 - http://dx.doi.org/10.1002/2211-5463.13701 SN - 2211-5463 N1 - Corresponding author: Petra Siegert VL - 13 IS - 11 SP - 2035 EP - 2046 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Haeger, Gerrit A1 - Probst, Johanna A1 - Jaeger, Karl-Erich A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - Novel aminoacylases from Streptomyces griseus DSM 40236 and their recombinant production in Streptomyces lividans JF - FEBS Open Bio N2 - Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl-amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236ᵀ . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC 3.5.1.14), designated SgAA, and an ε-lysine acylase (EC 3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl-amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl-amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-L-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl-amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine. KW - Streptomyces lividans KW - recombinant expression KW - Streptomyces griseus KW - ε-lysine acylase KW - α-aminoacylase Y1 - 2023 U6 - http://dx.doi.org/10.1002/2211-5463.13723 SN - 2211-5463 N1 - Corresponding author: Petra Siegert VL - 13 IS - 12 SP - 2224 EP - 2238 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Degering, Christian A1 - Eggert, Thorsten A1 - Puls, Michael A1 - Bongaerts, Johannes A1 - Evers, Stefan A1 - Maurer, Karl-Heinz A1 - Jaeger, Karl-Erich T1 - Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and herologous signal peptides JF - Applied and environmental microbiology N2 - Bacillus subtilis and Bacillus licheniformis are widely used for the large-scale industrial production of proteins. These strains can efficiently secrete proteins into the culture medium using the general secretion (Sec) pathway. A characteristic feature of all secreted proteins is their N-terminal signal peptides, which are recognized by the secretion machinery. Here, we have studied the production of an industrially important secreted protease, namely, subtilisin BPN′ from Bacillus amyloliquefaciens. One hundred seventy-three signal peptides originating from B. subtilis and 220 signal peptides from the B. licheniformis type strain were fused to this secretion target and expressed in B. subtilis, and the resulting library was analyzed by high-throughput screening for extracellular proteolytic activity. We have identified a number of signal peptides originating from both organisms which produced significantly increased yield of the secreted protease. Interestingly, we observed that levels of extracellular protease were improved not only in B. subtilis, which was used as the screening host, but also in two different B. licheniformis strains. To date, it is impossible to predict which signal peptide will result in better secretion and thus an improved yield of a given extracellular target protein. Our data show that screening a library consisting of homologous and heterologous signal peptides fused to a target protein can identify more-effective signal peptides, resulting in improved protein export not only in the original screening host but also in different production strains. Y1 - 2010 U6 - http://dx.doi.org/10.1128/AEM.01146-10 SN - 1098-5336 (E-Journal); 0003-6919 (Print); 0099-2240 (Print) VL - 76 IS - 19 SP - 6370 EP - 6378 PB - American Society for Microbiology CY - Washington, DC ER - TY - JOUR A1 - Schroeter, Rebecca A1 - Hoffmann, Tamara A1 - Voigt, Birgit A1 - Meyer, Hanna A1 - Bleisteiner, Monika A1 - Muntel, Jan A1 - Jürgen, Britta A1 - Albrecht, Dirk A1 - Becher, Dörte A1 - Lalk, Michael A1 - Evers, Stefan A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Putzer, Harald A1 - Hecker, Michael A1 - Schweder, Thomas A1 - Bremer, Erhard T1 - Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges JF - PLoS ONE N2 - The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress. Y1 - 2014 U6 - http://dx.doi.org/10.1371/journal.pone.0080956 SN - 1932-6203 VL - 8 IS - 11 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Handtke, Stefan A1 - Schroeter, Rebecca A1 - Jürgen, Britta A1 - Methling, Karen A1 - Schlüter, Rabea A1 - Albrecht, Dirk A1 - Hijum, Sacha A. F. T. van A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Lalk, Michael A1 - Schweder, Thomas A1 - Hecker, Michael A1 - Voigt, Birgit T1 - Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress JF - PLOS one N2 - Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus. Y1 - 2014 U6 - http://dx.doi.org/10.1371/journal.pone.0085625 SN - 1932-6203 VL - 9 IS - 1 PB - PLOS CY - San Francisco ER -