TY - CHAP A1 - Achenbach, Timm A1 - Geimer, Konstantin A1 - Lynen, Arthur A1 - Göttsche, Joachim A1 - Hoffschmidt, Bernhard T1 - Simulation of thermo-mechanical processes in open volumetric absorber modules T2 - SolarPaces 2012 : concentrating solar power and chemical energy systems : Sept. 11 - 14 2012, Marrakech, Marokko Y1 - 2012 SP - 1 EP - 8 ER - TY - CHAP A1 - Breitbach, Gerd A1 - Alexopoulos, Spiros A1 - May, Martin A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Analysis of volumetric solar radiation absorbers made of wire meshes T2 - AIP Conference Proceedings Y1 - 2019 U6 - https://doi.org/10.1063/1.5117521 SN - 0094243X VL - 2126 SP - 030009-1 EP - 030009-6 ER - TY - JOUR A1 - Göttsche, Joachim A1 - Blum, K. A1 - Schumacher, J. T1 - Simulationsprogramme in der Solarenergie-Ausbildung / Blum, K. ; Göttsche, J. ; Schumacher, J. JF - Energie für die Zukunft : : 28. Juni bis 1. Juli 1994; [Tagungsbericht] / 9. Internationales Sonnenforum '94. [Hrsg. Deutsche Gesellschaft für Sonnenenergie e.V. - DGS. Red. A. Hohmann ...] ; Bd. 2 Y1 - 1994 N1 - DGS 1994 - 9. ISF - Stuttgart ; Internationales Sonnenforum ; <9, 1994, Stuttgart> SP - 1786 EP - 1791 PB - DGS-Sonnenenergie-Verl. CY - München ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Göttsche, Joachim A1 - Sauerborn, Markus T1 - High concentration solar collectors T2 - Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications N2 - Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this chapter, different criteria for the choice of technology are analyzed in detail. KW - Central receiver system KW - Concentrated solar collector KW - Fresnel collector KW - Optical and thermal analysis KW - Solar concentration Y1 - 2012 SN - 978-0-08-087873-7 U6 - https://doi.org/10.1016/B978-0-08-087872-0.00306-1 VL - 3 SP - 165 EP - 209 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Anthrakidis, Anette A1 - Jahn, Roland A1 - Ritz, Thomas A1 - Schöttler, Mirjam A1 - Wallenborn, Ramona A1 - Warmke, Gisela T1 - Urbanes eCarSharing in einer vernetzten Gesellschaft Y1 - 2013 SN - 978-3-943356-70-0 PB - Steinbeis-Edition CY - Stuttgart ET - 1. Aufl. ER - TY - JOUR A1 - Göttsche, Joachim A1 - Reilly, S. A1 - Wittwer, Volker T1 - Advanced window systems and building energy performance / S. Reilly ; J. Göttsche ; V. Wittwer JF - Solar World Congress, 1991 : proceedings of the biennial congress of the International Solar Energy Society, Denver, Colorado, USA, 19-23 August 1991 / ed. by M. E. Arden ... Y1 - 1991 SN - 0-08-041690-X SP - 3211 EP - 3216 PB - Pergamon Press CY - Oxford [u.a.] ER - TY - JOUR A1 - Dersch, Jürgen A1 - Geyer, Michael A1 - Herrmann, Ulf A1 - Jones, Scott A. A1 - Kelly, Bruce A1 - Kistner, Rainer A1 - Ortmanns, Winfried A1 - Pitz-Paal, Robert A1 - Price, Henry T1 - Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems JF - Energy : the international journal Y1 - 2004 U6 - https://doi.org/10.1016/S0360-5442(03)00199-3 SN - 0360-5442 N1 - SolarPACES 2002, Zürich, Switzerland, 4–6 September 2002 VL - 29 IS - 5-6 (Special Issue SolarPaces) SP - 947 EP - 959 ER - TY - CHAP A1 - Rendon, Carlos A1 - Schwager, Christian A1 - Ghiasi, Mona A1 - Schmitz, Pascal A1 - Bohang, Fakhri A1 - Chico Caminos, Ricardo Alexander A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming T2 - AIP Conference Proceedings N2 - A 16.77 kW thermal power bayonet-tube reactor for the mixed reforming of methane using solar energy has been designed and modeled. A test bench for the experimental tests has been installed at the Synlight facility in Juelich, Germany and has just been commissioned. This paper presents the solar-heated reactor design for a combined steam and dry reforming as well as a scaled-up process simulation of a solar reforming plant for methanol production. Solar power towers are capable of providing large amounts of heat to drive high-endothermic reactions, and their integration with thermochemical processes shows a promising future. In the designed bayonet-tube reactor, the conventional burner arrangement for the combustion of natural gas has been substituted by a continuous 930 °C hot air stream, provided by means of a solar heated air receiver, a ceramic thermal storage and an auxiliary firing system. Inside the solar-heated reactor, the heat is transferred by means of convective mechanism mainly; instead of radiation mechanism as typically prevailing in fossil-based industrial reforming processes. A scaled-up solar reforming plant of 50.5 MWth was designed and simulated in Dymola® and AspenPlus®. In comparison to a fossil-based industrial reforming process of the same thermal capacity, a solar reforming plant with thermal storage promises a reduction up to 57 % of annual natural gas consumption in regions with annual DNI-value of 2349 kWh/m2. The benchmark solar reforming plant contributes to a CO2 avoidance of approx. 79 kilotons per year. This facility can produce a nominal output of 734.4 t of synthesis gas and out of this 530 t of methanol a day. Y1 - 2020 U6 - https://doi.org/10.1063/5.0029974 N1 - SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, 1–4 October 2019, Daegu, South Korea IS - 2303 SP - 170012-1 EP - 170012-9 ER - TY - RPRT A1 - Weis, Fabian A1 - Schorn, Christian A1 - Anthrakidis, Anette A1 - Herrmann, Ulf T1 - Entwicklung eines kleinen Parabolrinnenkollektors mit Kunststoffkorpus zur Bereitstellung solarer Prozesswärme : Poly-P : Abschlussbericht Y1 - 2016 PB - Solar-Institut Jülich CY - Jülich ER - TY - CHAP A1 - Gedle, Yibekal A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Schmitz, Pascal A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José A1 - Mahdi, Zahra A1 - Chico Caminos, Ricardo Alexander A1 - Dersch, Jürgen T1 - Analysis of an integrated CSP-PV hybrid power plant T2 - SOLARPACES 2020 N2 - In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] – [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution. KW - Hybrid energy system KW - Power plants KW - Electricity generation KW - Energy storage KW - Associated liquids Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086236 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER -