TY - JOUR A1 - Duong, Minh Tuan A1 - Nguyen, Nhu Huynh A1 - Staat, Manfred T1 - Physical response of hyperelastic models for composite materials and soft tissues JF - Asia pacific journal on computational engineering Y1 - 2015 U6 - https://doi.org/10.1186/s40540-015-0015-x SN - 2196-1166 VL - 2 IS - 3 (December 2015) SP - 1 EP - 18 ER - TY - CHAP A1 - Suryoputri, Nathania A1 - Ghaderi, Aydin A1 - Linder, Peter A1 - Kotliar, Konstantin A1 - Göttler, Jens A1 - Sorg, Christian A1 - Grimmer, Timo ED - Erni, Daniel ED - Fischerauer, Alice ED - Himmel, Jörg ED - Seeger, Thomas ED - Thelen, Klaus T1 - Does hemodynamic response function change in Alzheimer disease? T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - https://doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 SP - 92 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Bhattarai, Aroj A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Mechanics of soft tissue reactions to textile mesh implants T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - For pelvic floor disorders that cannot be treated with non-surgical procedures, minimally invasive surgery has become a more frequent and safer repair procedure. More than 20 million prosthetic meshes are implanted each year worldwide. The simple selection of a single synthetic mesh construction for any level and type of pelvic floor dysfunctions without adopting the design to specific requirements increase the risks for mesh related complications. Adverse events are closely related to chronic foreign body reaction, with enhanced formation of scar tissue around the surgical meshes, manifested as pain, mesh erosion in adjacent structures (with organ tissue cut), mesh shrinkage, mesh rejection and eventually recurrence. Such events, especially scar formation depend on effective porosity of the mesh, which decreases discontinuously at a critical stretch when pore areas decrease making the surgical reconstruction ineffective that further augments the re-operation costs. The extent of fibrotic reaction is increased with higher amount of foreign body material, larger surface, small pore size or with inadequate textile elasticity. Standardized studies of different meshes are essential to evaluate influencing factors for the failure and success of the reconstruction. Measurements of elasticity and tensile strength have to consider the mesh anisotropy as result of the textile structure. An appropriate mesh then should show some integration with limited scar reaction and preserved pores that are filled with local fat tissue. This chapter reviews various tissue reactions to different monofilament mesh implants that are used for incontinence and hernia repairs and study their mechanical behavior. This helps to predict the functional and biological outcomes after tissue reinforcement with meshes and permits further optimization of the meshes for the specific indications to improve the success of the surgical treatment. Y1 - 2018 SN - 978-981-10-7904-7 U6 - https://doi.org/10.1007/978-981-10-7904-7_11 SP - 251 EP - 275 PB - Springer CY - Singapore ER - TY - CHAP A1 - Blum, Yannik A1 - Albanna, Walid A1 - Benninghaus, Anne A1 - Kotliar, Konstantin ED - Staat, Manfred ED - Erni, Daniel T1 - Vasomotion in retinal vessels of patients presenting post hemorrhagic hydrocephalus following subarachnoid hemorrhage T2 - 3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen N2 - Clearance of blood components and fluid drainage play a crucial role in subarachnoid hemorrhage (SAH) and post hemorrhagic hydrocephalus (PHH). With the involvement of interstitial fluid (ISF) and cerebrospinal fluid (CSF), two pathways for the clearance of fluid and solutes in the brain are proposed. Starting at the level of capillaries, flow of ISF follows along the basement membranes in the walls of cerebral arteries out of the parenchyma to drain into the lymphatics and CSF [1]–[3]. Conversely, it is shown that CSF enters the parenchyma between glial and pial basement membranes of penetrating arteries [4]–[6]. Nevertheless, the involved structures and the contribution of either flow pathway to fluid balance between the subarachnoid space and interstitial space remains controversial. Low frequency oscillations in vascular tone are referred to as vasomotion and corresponding vasomotion waves are modeled as the driving force for flow of ISF out of the parenchyma [7]. Retinal vessel analysis (RVA) allows non-invasive measurement of retinal vessel vasomotion with respect to diameter changes [8]. Thus, the aim of the study is to investigate vasomotion in RVA signals of SAH and PHH patients. Y1 - 2019 SN - 978-3-940402-22-6 U6 - https://doi.org/10.17185/duepublico/48750 SP - 38 EP - 39 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - BOOK A1 - Staat, Manfred A1 - Erni, Daniel T1 - Symposium Proceedings; 3rd YRA MedTech Symposium 2019: May 24 / 2019 / FH Aachen Y1 - 2019 SN - 978-3-940402-22-6 U6 - https://doi.org/10.17185/duepublico/48750 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Nix, Yvonne A1 - Frotscher, Ralf A1 - Staat, Manfred ED - Eberhardsteiner, J. T1 - Implementation of the edge-based smoothed extended finite element method T2 - Proceedings 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) Vienna, Austria, September 10-14, 2012 Y1 - 2012 ER - TY - JOUR A1 - Scholz, A. A1 - Ley, Wilfried A1 - Dachwald, Bernd A1 - Miau, J. J. A1 - Juang, J. C. T1 - Flight results of the COMPASS-1 picosatellite mission JF - Acta Astronautica. 67 (2010), H. 9-10 Y1 - 2010 SN - 0094-5765 SP - 1289 EP - 1298 ER - TY - JOUR A1 - Tran, Thanh Ngoc A1 - Staat, Manfred T1 - Shakedown analysis of two dimensional structures by an edge-based smoothed finite element method Y1 - 2010 N1 - ECCM 2010, IV European Conference on Computational Mechanics, Paris, France, May 16-21, 2010. SP - 1 EP - 7 ER - TY - JOUR A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül T1 - The emperor's new body : seeking for a blueprint of limb regeneration in humans JF - Stem cell engineering : principles and applications / Gerhard M. Artmann ... eds. Y1 - 2011 SN - 978-3-642-11864-7 SP - 3 EP - 37 PB - Springer CY - Berlin [u.a.] ER - TY - JOUR A1 - Leschinger, Tim A1 - Besch, Katharina A1 - Aydin, Cansu A1 - Staat, Manfred A1 - Scaal, Martin A1 - Müller, Lars Peter A1 - Wegmann, Kilian T1 - Irreparable rotator cuff tears: a biomechanical comparison of superior capsuloligamentous complex reconstruction techniques and an interposition graft technique JF - The Orthopaedic Journal of Sports Medicine Y1 - 2019 U6 - https://doi.org/10.1177/2325967119864590 VL - 7 IS - 8 SP - 1 EP - 5 ER -