TY - JOUR A1 - Everaers, Ralf A1 - Karimi-Varzaneh, Hossein Ali A1 - Fleck, Franz A1 - Hojdis, Nils A1 - Svaneborg, Carsten T1 - Kremer–Grest Models for Commodity Polymer Melts: Linking Theory, Experiment, and Simulation at the Kuhn Scale JF - Macromolecules N2 - The Kremer–Grest (KG) polymer model is a standard model for studying generic polymer properties in molecular dynamics simulations. It owes its popularity to its simplicity and computational efficiency, rather than its ability to represent specific polymers species and conditions. Here we show that by tuning the chain stiffness it is possible to adapt the KG model to model melts of real polymers. In particular, we provide mapping relations from KG to SI units for a wide range of commodity polymers. The connection between the experimental and the KG melts is made at the Kuhn scale, i.e., at the crossover from the chemistry-specific small scale to the universal large scale behavior. We expect Kuhn scale-mapped KG models to faithfully represent universal properties dominated by the large scale conformational statistics and dynamics of flexible polymers. In particular, we observe very good agreement between entanglement moduli of our KG models and the experimental moduli of the target polymers. Y1 - 2020 U6 - https://doi.org/10.1021/acs.macromol.9b02428 SN - 1520-5835 VL - 53 IS - 6 SP - 1901 EP - 1916 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Meyer, Jan A1 - Hentschke, Reinhard A1 - Hager, Jonathan A1 - Hojdis, Nils A1 - Karimi-Varzaneh, Hossein Ali T1 - Molecular Simulation of Viscous Dissipation due to Cyclic Deformation of a Silica–Silica Contact in Filled Rubber JF - Macromolecules Y1 - 2017 U6 - https://doi.org/10.1021/acs.macromol.7b00947 SN - 1520-5835 VL - 50 IS - 17 SP - 6679 EP - 6689 ER - TY - JOUR A1 - Hager, Jonathan A1 - Hentschke, Reinhard A1 - Hojdis, Nils A1 - Karimi-Varzaneh, Hossein Ali T1 - Computer Simulation of Particle–Particle Interaction in a Model Polymer Nanocomposite JF - Macromolecules Y1 - 2015 U6 - https://doi.org/10.1021/acs.macromol.5b01864 SN - 1520-5835 VL - 48 IS - 24 SP - 9039 EP - 9049 ER - TY - JOUR A1 - Waller, Mark P. A1 - Braun, Heiko A1 - Hojdis, Nils A1 - Bühl, Michael T1 - Geometries of Second-Row Transition-Metal Complexes from Density-Functional Theory JF - Journal of Chemical Theory and Computation Y1 - 2007 U6 - https://doi.org/10.1021/ct700178y SN - 1549-9626 VL - 3 IS - 6 SP - 2234 EP - 2242 ER - TY - JOUR A1 - Svaneborg, Carsten A1 - Karimi-Varzaneh, Hossein Ali A1 - Hojdis, Nils A1 - Fleck, Franz A1 - Everaers, Ralf T1 - Kremer-Grest Models for Universal Properties of Specific Common Polymer Species JF - Soft Condensed Matter N2 - The Kremer-Grest (KG) bead-spring model is a near standard in Molecular Dynamic simulations of generic polymer properties. It owes its popularity to its computational efficiency, rather than its ability to represent specific polymer species and conditions. Here we investigate how to adapt the model to match the universal properties of a wide range of chemical polymers species. For this purpose we vary a single parameter originally introduced by Faller and Müller-Plathe, the chain stiffness. Examples include polystyrene, polyethylene, polypropylene, cis-polyisoprene, polydimethylsiloxane, polyethyleneoxide and styrene-butadiene rubber. We do this by matching the number of Kuhn segments per chain and the number of Kuhn segments per cubic Kuhn volume for the polymer species and for the Kremer-Grest model. We also derive mapping relations for converting KG model units back to physical units, in particular we obtain the entanglement time for the KG model as function of stiffness allowing for a time mapping. To test these relations, we generate large equilibrated well entangled polymer melts, and measure the entanglement moduli using a static primitive-path analysis of the entangled melt structure as well as by simulations of step-strain deformation of the model melts. The obtained moduli for our model polymer melts are in good agreement with the experimentally expected moduli. Y1 - 2018 IS - 1606.05008 ER - TY - JOUR A1 - Mayer, Jan A1 - Hentschke, Reinhard A1 - Hager, Jonathan A1 - Hojdis, Nils A1 - Karimi-Varnaneh, Hossein Ali T1 - A Nano-Mechanical Instability as Primary Contribution to Rolling Resistance JF - Scientific Reports Y1 - 2017 SN - 2045-2322 VL - 7 IS - Article number 11275 PB - Springer CY - Berlin ER - TY - BOOK A1 - Lauth, Jakob A1 - Kowalczyk, Jürgen T1 - Thermodynamik : eine Einführung Y1 - 2015 SN - 978-3-662-46228-7 U6 - https://doi.org/10.1007/978-3-662-46229-4 PB - Springer Spektrum CY - Berlin ER - TY - JOUR A1 - Eckert, Alexander A1 - Abbasi, Mozhdeh A1 - Mang, Thomas A1 - Saalwächter, Kay A1 - Walther, Andreas T1 - Structure, Mechanical Properties, and Dynamics of Polyethylenoxide/Nanoclay Nacre-Mimetic Nanocomposites JF - Macromolecules N2 - Nacre-mimetic nanocomposites based on high fractions of synthetic high-aspect-ratio nanoclays in combination with polymers are continuously pushing boundaries for advanced material properties, such as high barrier against oxygen, extraordinary mechanical behavior, fire shielding, and glass-like transparency. Additionally, they provide interesting model systems to study polymers under nanoconfinement due to the well-defined layered nanocomposite arrangement. Although the general behavior in terms of forming such layered nanocomposite materials using evaporative self-assembly and controlling the nanoclay gallery spacing by the nanoclay/polymer ratio is understood, some combinations of polymer matrices and nanoclay reinforcement do not comply with the established models. Here, we demonstrate a thorough characterization and analysis of such an unusual polymer/nanoclay pair that falls outside of the general behavior. Poly(ethylene oxide) (PEO) and sodium fluorohectorite form nacre-mimetic, lamellar nanocomposites that are completely transparent and show high mechanical stiffness and high gas barrier, but there is only limited expansion of the nanoclay gallery spacing when adding increasing amounts of polymer. This behavior is maintained for molecular weights of PEO varied over four orders of magnitude and can be traced back to depletion forces. By careful investigation via X-ray diffraction and proton low-resolution solid-state NMR, we are able to quantify the amount of mobile and immobilized polymer species in between the nanoclay galleries and around proposed tactoid stacks embedded in a PEO matrix. We further elucidate the unusual confined polymer dynamics, indicating a relevant role of specific surface interactions. Y1 - 2020 U6 - https://doi.org/10.1021/acs.macromol.9b01931 SN - 1520-5835 VL - 53 IS - 5 SP - 1716 EP - 1725 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Lowis, Carsten A1 - Ferguson, Simon A1 - Paulßen, Elisabeth A1 - Hoehr, Cornelia T1 - Improved Sc-44 production in a siphon-style liquid target on a medical cyclotron JF - Applied Radiation and Isotopes Y1 - 2021 U6 - https://doi.org/10.1016/j.apradiso.2021.109675 SN - 0969-8043 VL - 172 IS - Art. 109675 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Lauth, Jakob T1 - Physikalische Chemie kompakt KW - Physikalische Chemie Y1 - 2022 SN - 978-3-662-64587-1 U6 - https://doi.org/https://doi.org/10.1007/978-3-662-64588-8 PB - Springer Spektrum CY - Berlin ER -