TY - JOUR A1 - Koch, Christopher A1 - Böhnisch, Nils A1 - Verdonck, Hendrik A1 - Hach, Oliver A1 - Braun, Carsten T1 - Comparison of unsteady low- and mid-fidelity propeller aerodynamic methods for whirl flutter applications JF - Applied Sciences N2 - Aircraft configurations with propellers have been drawing more attention in recent times, partly due to new propulsion concepts based on hydrogen fuel cells and electric motors. These configurations are prone to whirl flutter, which is an aeroelastic instability affecting airframes with elastically supported propellers. It commonly needs to be mitigated already during the design phase of such configurations, requiring, among other things, unsteady aerodynamic transfer functions for the propeller. However, no comprehensive assessment of unsteady propeller aerodynamics for aeroelastic analysis is available in the literature. This paper provides a detailed comparison of nine different low- to mid-fidelity aerodynamic methods, demonstrating their impact on linear, unsteady aerodynamics, as well as whirl flutter stability prediction. Quasi-steady and unsteady methods for blade lift with or without coupling to blade element momentum theory are evaluated and compared to mid-fidelity potential flow solvers (UPM and DUST) and classical, derivative-based methods. Time-domain identification of frequency-domain transfer functions for the unsteady propeller hub loads is used to compare the different methods. Predictions of the minimum required pylon stiffness for stability show good agreement among the mid-fidelity methods. The differences in the stability predictions for the low-fidelity methods are higher. Most methods studied yield a more unstable system than classical, derivative-based whirl flutter analysis, indicating that the use of more sophisticated aerodynamic modeling techniques might be required for accurate whirl flutter prediction. KW - Aeroelasticity KW - Flutter KW - Propeller whirl flutter KW - Unsteady aerodynamics KW - 1P hub loads Y1 - 2024 U6 - http://dx.doi.org/10.3390/app14020850 SN - 2076-3417 VL - 14 IS - 2 SP - 1 EP - 28 PB - MDPI CY - Basel ER - TY - JOUR A1 - Funke, Harald A1 - Esch, Thomas A1 - Roosen, Petra T1 - Powertrain Adaptions for LPG Usage in General Aviation JF - MTZ worldwide N2 - In general aviation, too, it is desirable to be able to operate existing internal combustion engines with fuels that produce less CO₂ than Avgas 100LL being widely used today It can be assumed that, in comparison, the fuels CNG, LPG or LNG, which are gaseous under normal conditions, produce significantly lower emissions. Necessary propulsion system adaptations were investigated as part of a research project at Aachen University of Applied Sciences. Y1 - 2022 U6 - http://dx.doi.org/10.1007/s38313-021-0756-6 VL - 2022 IS - 83 SP - 58 EP - 62 PB - Springer Nature CY - Basel ER - TY - GEN A1 - Eickmann, Matthias A1 - Esch, Thomas A1 - Funke, Harald A1 - Abanteriba, Sylvester A1 - Roosen, Petra T1 - Biofuels in Aviation – Safety Implications of Bio-Ethanol Usage in General Aviation Aircraft N2 - Up in the clouds and above fuels and construction materials must be very carefully selected to ensure a smooth flight and touchdown. Out of around 38,000 single and dual-engined propeller aeroplanes, roughly a third are affected by a new trend in the fuel sector that may lead to operating troubles or even emergency landings: The admixture of bio-ethanol to conventional gasoline. Experiences with these fuels may be projected to alternative mixtures containing new components. Y1 - 2014 N1 - 2. International Conference of the Cluster of Excellence Tailor-Made Fuels from Biomass, Aachen 2013 ER - TY - JOUR A1 - Schulze, Sven A1 - Feyerl, Günter A1 - Pischinger, Stefan T1 - Advanced ECMS for hybrid electric heavy-duty trucks with predictive battery discharge and adaptive operating strategy under real driving conditions JF - Energies N2 - To fulfil the CO2 emission reduction targets of the European Union (EU), heavy-duty (HD) trucks need to operate 15% more efficiently by 2025 and 30% by 2030. Their electrification is necessary as conventional HD trucks are already optimized for the long-haul application. The resulting hybrid electric vehicle (HEV) truck gains most of the fuel saving potential by the recuperation of potential energy and its consecutive utilization. The key to utilizing the full potential of HEV-HD trucks is to maximize the amount of recuperated energy and ensure its intelligent usage while keeping the operating point of the internal combustion engine as efficient as possible. To achieve this goal, an intelligent energy management strategy (EMS) based on ECMS is developed for a parallel HEV-HD truck which uses predictive discharge of the battery and adaptive operating strategy regarding the height profile and the vehicle mass. The presented EMS can reproduce the global optimal operating strategy over long phases and lead to a fuel saving potential of up to 2% compared with a heuristic strategy. Furthermore, the fuel saving potential is correlated with the investigated boundary conditions to deepen the understanding of the impact of intelligent EMS for HEV-HD trucks. KW - Energy management strategies KW - ECMS KW - CO2 emission reduction targets KW - Driving cycle recognition KW - Predictive battery discharge Y1 - 2023 U6 - http://dx.doi.org/10.3390/en16135171 SN - 1996-1073 N1 - The article belongs to the Special Issue "Energy Management Strategies of Electrified Vehicles toward the Real-World Driving". VL - 16 IS - 13 PB - MDPI CY - Basel ER - TY - PAT A1 - Schmitz, Günter A1 - Schebitz, Michael A1 - Esch, Thomas T1 - Aus der Ruhelage selbstanziehender elektromagnetischer Aktuator N2 - Elektromagnetischer Aktuator zur Betätigung eines Stellgliedes (2), mit wenigstens einem Elektromagneten (4) und einem mit dem Stellglied (2) verbundenen Anker (3), der gegen die Kraft einer Rückstellfeder (6) aus seiner Ruhelage in Richtung auf den Elektromagneten (4) bewegbar ist, mit einer Rückstellfeder (6), die eine nicht lineare, bezogen auf die Ruhelage des Ankers (3) progressiv ansteigende Kennlinie aufweist. Y1 - 1997 N1 - Patent DE000019529152B4 2005.12.29 ER - TY - PAT A1 - Salber, Wolfgang A1 - Pischinger, Martin A1 - Esch, Thomas A1 - Hagen, Jürgen T1 - Kaltstartverfahren für eine drosselfreie Mehrzylinder-Kolbenbrennkraftmaschine N2 - Die Erfindung betrifft ein Kaltstartverfahren für eine Mehrzylinder-Kolbenbrennkraftmaschine mit Anlasser und einer Motorsteuerung zur Ansteuerung von Kraftstoffeinspritzeinrichtungen, Zündung und voll variabel elektromagnetisch betätigbaren Gaswechselventilen an den einzelnen Zylindern, bei dem die Kurbelwelle über den Anlasser gedreht wird und zum Start für wenigstens einen Zylinder die dazugehörigen Gaswechselventile, die Kraftstoffeinspritzeinrichtung und die Zündung in einem vorgegebenen Taktzyklus angesteuert werden und zwar in den ersten Arbeitszyklen mit "Spätem Einlaß Öffnen". Y1 - 2000 N1 - Patent DE000019830974B4 2005.11.03 ER - TY - CHAP A1 - Schopen, Oliver A1 - Shabani, Bahman A1 - Esch, Thomas A1 - Kemper, Hans A1 - Shah, Neel ED - Rahim, S.A. ED - As'arry, A. ED - Zuhri, M.Y.M. ED - Harmin, M.Y. ED - Rezali, K.A.M. ED - Hairuddin, A.A. T1 - Quantitative evaluation of health management designs for fuel cell systems in transport vehicles T2 - 2nd UNITED-SAIG International Conference Proceedings N2 - Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified. KW - aviation application KW - health management systems KW - fuel cell systems Y1 - 2022 N1 - 2nd UNITED-SAIG International Conference, 23-24 May 2022, Putrajaya, Malaysia SP - 1 EP - 3 ER - TY - CHAP A1 - Schopen, Oliver A1 - Kemper, Hans A1 - Esch, Thomas T1 - Development of a comparison methodology and evaluation matrix for electrically driven compressors in ICE and FC T2 - Proceedings of the 1st UNITED – Southeast Asia Automotive Interest Group (SAIG) International Conference N2 - In addition to electromobility and alternative drive systems, a focus is set on electrically driven compressors (EDC), with a high potential for increasing the efficiency of internal combustion engines (ICE) and fuel cells [01]. The primary objective is to increase the ICE torque, provided independently of the ICE speed by compressing the intake air and consequently the ICE filling level supported by the compressor. For operation independent from the ICE speed, the EDC compressor is decoupled from the turbine by using an electric compressor motor (CM) instead of the turbine. ICE performances can be increased by the use of EDC where individual compressor parameters are adapted to the respective application area [02] [03]. This task contains great challenges, increased by demands with regard to pollutant reduction while maintaining constant performance and reduced fuel consumption. The FH-Aachen is equipped with an EDC test bench which enables EDC-investigations in various configurations and operating modes. Characteristic properties of different compressors can be determined, which build the basis for a comparison methodology. Subject of this project is the development of a comparison methodology for EDC with an associated evaluation method and a defined overall evaluation method. For the application of this comparison methodology, corresponding series of measurements are carried out on the EDC test bench using an appropriate test device. KW - electro mobility KW - fuel cell KW - internal combustion engine KW - electrically driven compressors Y1 - 2021 SN - 978-3-902103-94-9 N1 - 1st UNITED-SAIG International Conference, 21-22 APR 2021, Chulalongkorn University, Thailand SP - 45 EP - 46 PB - FH Joanneum CY - Graz ER - TY - CHAP A1 - Veettil, Yadu Krishna Morassery A1 - Rakshit, Shantam A1 - Schopen, Oliver A1 - Kemper, Hans A1 - Esch, Thomas A1 - Shabani, Bahman ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Automated Control System Strategies to Ensure Safety of PEM Fuel Cells Using Kalman Filters T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - Having well-defined control strategies for fuel cells, that can efficiently detect errors and take corrective action is critically important for safety in all applications, and especially so in aviation. The algorithms not only ensure operator safety by monitoring the fuel cell and connected components, but also contribute to extending the health of the fuel cell, its durability and safe operation over its lifetime. While sensors are used to provide peripheral data surrounding the fuel cell, the internal states of the fuel cell cannot be directly measured. To overcome this restriction, Kalman Filter has been implemented as an internal state observer. Other safety conditions are evaluated using real-time data from every connected sensor and corrective actions automatically take place to ensure safety. The algorithms discussed in this paper have been validated thorough Model-in-the-Loop (MiL) tests as well as practical validation at a dedicated test bench. KW - control system KW - PEM fuel cells KW - Kalman filter Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - http://dx.doi.org/10.1007/978-981-19-3179-6_55 SN - 2195-4356 N1 - The 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021) was organized by Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, on 23 November 2021 SP - 296 EP - 299 PB - Springer Nature CY - Singapore ER - TY - CHAP A1 - Tamaldin, Noreffendy A1 - Mansor, Muhd Rizuan A1 - Mat Yamin, Ahmad Kamal A1 - Bin Abdollah, Mohd Fazli A1 - Esch, Thomas A1 - Tonoli, Andrea A1 - Reisinger, Karl Heinz A1 - Sprenger, Hanna A1 - Razuli, Hisham ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Development of UTeM United Future Fuel Design Training Center Under Erasmus+ United Program T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - The industrial revolution IR4.0 era have driven many states of the art technologies to be introduced especially in the automotive industry. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South-East Asia (SEA). Indulging this situation, FH Joanneum, Austria together with European partners from FH Aachen, Germany and Politecnico Di Torino, Italy is taking initiative to close the gap utilizing the Erasmus+ United grant from EU. A consortium was founded to engage with automotive technology transfer using the European ramework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative, and high-quality training courses to increase graduate’s employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing Universityindustry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future. KW - Erasmus+ United KW - technology transfer KW - UTeM Engineering Knowledge Transfer Unit KW - Malaysian automotive industry Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - http://dx.doi.org/10.1007/978-981-19-3179-6_50 SN - 2195-4356 N1 - The 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021) was organized by Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, on 23 November 2021. SP - 274 EP - 278 PB - Springer Nature CY - Singapore ER -