TY - JOUR A1 - Dotzauer, Martin A1 - Pfeiffer, Diana A1 - Lauer, Markus A1 - Pohl, Marcel A1 - Mauky, Eric A1 - Bär, Katharina A1 - Sonnleitner, Matthias A1 - Zörner, Wilfried A1 - Hudde, Jessica A1 - Schwarz, Björn A1 - Faßauer, Burkhardt A1 - Dahmen, Markus A1 - Rieke, Christian A1 - Herbert, Johannes A1 - Thrän, Daniela T1 - How to measure flexibility – Performance indicators for demand driven power generation from biogas plants JF - Renewable Energy Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.renene.2018.10.021 SN - 0960-1481 SP - 135 EP - 146 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Borchert, Jörg A1 - Tenbrake, Andre T1 - Bewirtschaftung von Flexibilität über Microservices eines Plattformanbieters T2 - Realisierung Utility 4.0 Band 1 N2 - Die Energiewirtschaft befindet sich in einem starken Wandel, der v. a. durch die Energiewende und Digitalisierung Druck auf sämtliche Marktteilnehmer ausübt. Das klassische Geschäftsmodell des Energieversorgungsunternehmens verändert sich dabei grundlegend. Der kontinuierlich ansteigende Einsatz dezentraler und volatiler Erzeugungsanlagen macht die Identifikation von Flexibilitätspotenzialen notwendig, um weiterhin eine hohe Versorgungssicherheit zu gewährleisten. Dieser Schritt ist nur mit einem hohen Digitalisierungsgrad möglich. Eine funktionale Plattform mit Microservices, die zu Geschäftsprozessen verbunden werden können, wird als Möglichkeit zur Aktivierung der Flexibilität und Digitalisierung der Energieversorgungsunternehmen im Folgenden vorgestellt. Y1 - 2020 SN - 978-3-658-25332-5 U6 - http://dx.doi.org/10.1007/978-3-658-25332-5_37 SP - 615 EP - 626 PB - Springer Vieweg CY - Wiesbaden ER - TY - BOOK A1 - Pieper, Martin T1 - Quantenmechanik : Einführung in die mathematische Formulierung Y1 - 2019 SN - 978-3-658-28329-2 U6 - http://dx.doi.org/10.1007/978-3-658-28329-2 N1 - auch gedruckt in der Bereichbibliothek Jülich unter der Signatur 61 UHH 41 PB - Springer Spektrum CY - Wiesbaden ER - TY - JOUR A1 - Nobis, Moritz A1 - Schmitt, Carlo A1 - Schemm, Ralf A1 - Schnettler, Armin T1 - Pan-European CVAR-constrained stochastic unit commitment in day-ahead and intraday electricity markets JF - Energies N2 - The fundamental modeling of energy systems through individual unit commitment decisions is crucial for energy system planning. However, current large-scale models are not capable of including uncertainties or even risk-averse behavior arising from forecasting errors of variable renewable energies. However, risks associated with uncertain forecasting errors have become increasingly relevant within the process of decarbonization. The intraday market serves to compensate for these forecasting errors. Thus, the uncertainty of forecasting errors results in uncertain intraday prices and quantities. Therefore, this paper proposes a two-stage risk-constrained stochastic optimization approach to fundamentally model unit commitment decisions facing an uncertain intraday market. By the nesting of Lagrangian relaxation and an extended Benders decomposition, this model can be applied to large-scale, e.g., pan-European, power systems. The approach is applied to scenarios for 2023—considering a full nuclear phase-out in Germany—and 2035—considering a full coal phase-out in Germany. First, the influence of the risk factors is evaluated. Furthermore, an evaluation of the market prices shows an increase in price levels as well as an increasing day-ahead-intraday spread in 2023 and in 2035. Finally, it is shown that intraday cross-border trading has a significant influence on trading volumes and prices and ensures a more efficient allocation of resources. Y1 - 2020 U6 - http://dx.doi.org/10.3390/en13092339 SN - 1996-1073 N1 - Special Issue Uncertainties and Risk Management in Competitive Energy Markets VL - 13 IS - Art. 2339 SP - 1 EP - 35 PB - MDPI CY - Basel ER - TY - JOUR A1 - Hoffstadt, Kevin A1 - Pohen, Gino D. A1 - Dicke, Max D. A1 - Paulsen, Svea A1 - Krafft, Simone A1 - Zang, Joachim W. A1 - Fonseca-Zang, Warde A. da A1 - Leite, Athaydes A1 - Kuperjans, Isabel T1 - Challenges and prospects of biogas from energy cane as supplement to bioethanol production JF - Agronomy N2 - Innovative breeds of sugar cane yield up to 2.5 times as much organic matter as conventional breeds, resulting in a great potential for biogas production. The use of biogas production as a complementary solution to conventional and second-generation ethanol production in Brazil may increase the energy produced per hectare in the sugarcane sector. Herein, it was demonstrated that through ensiling, energy cane can be conserved for six months; the stored cane can then be fed into a continuous biogas process. This approach is necessary to achieve year-round biogas production at an industrial scale. Batch tests revealed specific biogas potentials between 400 and 600 LN/kgVS for both the ensiled and non-ensiled energy cane, and the specific biogas potential of a continuous biogas process fed with ensiled energy cane was in the same range. Peak biogas losses through ensiling of up to 27% after six months were observed. Finally, compared with second-generation ethanol production using energy cane, the results indicated that biogas production from energy cane may lead to higher energy yields per hectare, with an average energy yield of up to 162 MWh/ha. Finally, the Farm²CBG concept is introduced, showing an approach for decentralized biogas production. Y1 - 2020 U6 - http://dx.doi.org/10.3390/agronomy10060821 SN - 2073-4395 VL - 10 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Cheenakula, Dheeraja A1 - Hoffstadt, Kevin A1 - Krafft, Simone A1 - Reinecke, Diana A1 - Klose, Holger A1 - Kuperjans, Isabel A1 - Grömping, Markus T1 - Anaerobic digestion of algal–bacterial biomass of an Algal Turf Scrubber system JF - Biomass Conversion and Biorefinery N2 - This study investigated the anaerobic digestion of an algal–bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal–bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4%) and a mixture of manure and maize silage (107.4%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6%) and percolated green waste (43.5%) inocula. To further evaluate the potential of algal–bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7–12.5 MWh a−1) can be gained through the addition of algal–bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies. KW - Biogas KW - Methane KW - Algal Turf Scrubber KW - Algal–bacterial bioflm KW - Circular bioeconomy Y1 - 2022 U6 - http://dx.doi.org/10.1007/s13399-022-03236-z SN - 2190-6823 N1 - Corresponding author: Dheeraja Cheenakula VL - 13 SP - 15 Seiten PB - Springer CY - Berlin ER - TY - BOOK A1 - Pieper, Martin T1 - Quantenmechanik: Einführung in die mathematische Formulierung Y1 - 2019 SN - 978-3-658-28328-5 U6 - http://dx.doi.org/10.1007/978-3-658-28329-2 PB - Springer Spektrum CY - Wiesbaden ER - TY - BOOK A1 - Pieper, Martin T1 - Quantum mechanics: Introduction to mathematical formulation N2 - Anyone who has always wanted to understand the hieroglyphs on Sheldon's blackboard in the TV series The Big Bang Theory or who wanted to know exactly what the fate of Schrödinger's cat is all about will find a short, descriptive introduction to the world of quantum mechanics in this essential. The text particularly focuses on the mathematical description in the Hilbert space. The content goes beyond popular scientific presentations, but is nevertheless suitable for readers without special prior knowledge thanks to the clear examples. KW - Quantenmechanik KW - Hilbert Room KW - Postulates KW - Schrödingers cat KW - Operators Y1 - 2021 SN - 978-3-658-32644-9 SN - 978-3-658-32645-6 U6 - http://dx.doi.org/10.1007/978-3-658-32645-6 PB - Springer CY - Wiesbaden ER - TY - CHAP A1 - Jordan, Frank A1 - Katz, Christiane A1 - Pieper, Martin T1 - Online-Kollaboration in der Mathematik: Ein Design-Based-Research-Projekt T2 - Forschungsimpulse für hybrides Lehren und Lernen an Hochschulen N2 - Die Studie erörtert anhand eines Fallbeispiels aus der Mathematik für Ingenieur*innen, wie didaktische Gestaltungsprinzipien für Soziale Präsenz, Kollaboration und das Lösen von praxisnahen Problemen mit mathematischem Denken in einer Online-Umgebung aussehen können. Hierfür zieht der Beitrag den forschungsmethodologischen Rahmen Design-Based Research (DBR) hinzu und berichtet über Zwischenergebnisse. DBR wird an dieser Stelle als eine systematische Herangehensweise an kurzfristige Lehrveränderungen und als Chance auf dem Weg zu einer neuen Hochschullehre nach der COVID-19-Pandemie dargestellt, die theoretische und empirische Erkenntnisse mit Praxisverknüpfung und -relevanz vereint. Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:832-cos4-9465 SP - 245 EP - 261 PB - TH Köln CY - Köln ER - TY - JOUR A1 - Rupp, Matthias A1 - Rieke, Christian A1 - Handschuh, Nils A1 - Kuperjans, Isabel T1 - Economic and ecological optimization of electric bus charging considering variable electricity prices and CO₂eq intensities JF - Transportation Research Part D: Transport and Environment N2 - In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses. In this study, we present a new methodology for optimizing the vehicles’ charging time as a function of the parameters CO₂eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO₂eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO₂ are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle. In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6% compared to charging at a fixed electricity price. The savings potential of CO₂eq emissions is similar, at 14.9%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO₂eq intensity is also low in this period, but midday charging leads to the largest savings in CO₂eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5% CO₂eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.trd.2020.102293 SN - 1361-9209 VL - 81 IS - Article 102293 PB - Elsevier CY - Amsterdam ER -