TY - JOUR A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Reisert, Steffen A1 - Schubert, J. A1 - Zander, W. A1 - Begoyan, V. K. A1 - Buniatyan, V. V. A1 - Schöning, Michael Josef T1 - Chemical sensors based on a high-k perovskite oxide of barium strontium titanate JF - Procedia Engineering N2 - High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors for liquids. In this work, BST films have been applied as a sensitive transducer material for a label-free detection of adsorbed charged macromolecules (positively charged polyelectrolytes) and concentration of hydrogen peroxide vapor as well as protection insulator layer for a contactless electrolyte-conductivity sensor. The experimental results of characterization of individual sensors are presented. Special emphasis is devoted towards the development of a capacitively-coupled contactless electrolyte-conductivity sensor. KW - barium strontium titanate KW - high-k material KW - contactless conductivity sensor KW - multi-functional material KW - hydrogen peroxide Y1 - 2014 U6 - https://doi.org/10.1016/j.proeng.2014.11.258 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 28 EP - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tippkötter, Nils A1 - Duwe, Anna-Maria A1 - Wiesen, Sebastian A1 - Sieker, Tim A1 - Ulber, Roland T1 - Enzymatic hydrolysis of beech wood lignocellulose at high solid contents and its utilization as substrate for the production of biobutanol and dicarboxylic acids JF - Bioresource Technology N2 - The development of a cost-effective hydrolysis for crude cellulose is an essential part of biorefinery developments. To establish such high solid hydrolysis, a new solid state reactor with static mixing is used. However, concentrations >10% (w/w) cause a rate and yield reduction of enzymatic hydrolysis. By optimizing the synergetic activity of cellulolytic enzymes at solid concentrations of 9%, 17% and 23% (w/w) of crude Organosolv cellulose, glucose concentrations of 57, 113 and 152 g L⁻¹ are reached. However, the glucose yield decreases from 0.81 to 0.72gg⁻¹ at 17% (w/w). Optimal conditions for hydrolysis scale-up under minimal enzyme addition are identified. As result, at 23% (w/w) crude cellulose the glucose yield increases from 0.29 to 0.49gg⁻¹. As proof of its applicability, biobutanol, succinic and itaconic acid are produced with the crude hydrolysate. The potential of the substrate is proven e.g. by a high butanol yield of 0.33gg⁻¹. Y1 - 2014 U6 - https://doi.org/10.1016/j.biortech.2014.06.052 VL - 167 SP - 447 EP - 455 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tippkötter, Nils A1 - Wollny, Steffen A1 - Suck, Kirstin A1 - Sohling, Ulrich A1 - Ruf, Friedrich A1 - Ulber, Roland T1 - Recycling of spent oil bleaching earth as source of glycerol for the anaerobic production of acetone, butanol, and ethanol with Clostridium diolis and lipolytic Clostridium lundense JF - Engineering in Life Sciences N2 - A major part of edible oil is subjected to bleaching procedures, primarily with minerals applied as adsorbers. Their recycling is currently done either by regaining the oil via organic solvent extraction or by using the spent bleaching earth (SBE) as additive for animal feed, etc. As a new method, the reutilization of the by-product SBE for the microbiologic formation of acetone, butanol, and ethanol (ABE) is presented as proof-of-concept. The SBE was taken from a palm oil cleaning process. The recycling concept is based on the application of lipolytic clostridia strains. Due to considerably long fermentation times, co-fermentation with Candida rugosa and enzymatic hydrolyses of the bound oil with a subsequent clostridia fermentation are shown as alternative routes. Anaerobic fermentations under comparison of different clostridia strains were performed with glycerol media, enzymatically hydrolyzed palm oil and SBE. Solutes, side product compositions and productivities were quantified via HPLC. A successful production of ABE solutes from SBE has been done with a yield of 0.15 g butanol per gram of bound glycerol. Thus, the biotechnological recycling of the waste stream is possible in principle. Inhibition of the substrate suspension has been observed. A chromatographic ion-exchange of substrates increased the biomass concentration. Y1 - 2014 U6 - https://doi.org/10.1002/elsc.201300113 SN - 1618-2863 VL - 14 IS - 4 SP - 425 EP - 432 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Kerroumi, Iman A1 - Schusser, Sebastian A1 - Bäcker, Matthias A1 - Zander, Willi A1 - Schubert, Jürgen A1 - Buniatyan, Vahe V. A1 - Martirosyan, Norayr W. A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Multiparameter sensor chip with Barium Strontium Titanate as multipurpose material JF - Electroanalysis N2 - It is well known that biochemical and biotechnological processes are strongly dependent and affected by a variety of physico-chemical parameters such as pH value, temperature, pressure and electrolyte conductivity. Therefore, these quantities have to be monitored or controlled in order to guarantee a stable process operation, optimization and high yield. In this work, a sensor chip for the multiparameter detection of three physico-chemical parameters such as electrolyte conductivity, pH and temperature is realized using barium strontium titanate (BST) as multipurpose material. The chip integrates a capacitively coupled four-electrode electrolyte-conductivity sensor, a capacitive field-effect pH sensor and a thin-film Pt-temperature sensor. Due to the multifunctional properties of BST, it is utilized as final outermost coating layer of the processed sensor chip and serves as passivation and protection layer as well as pH-sensitive transducer material at the same time. The results of testing of the individual sensors of the developed multiparameter sensor chip are presented. In addition, a quasi-simultaneous multiparameter characterization of the sensor chip in buffer solutions with different pH value and electrolyte conductivity is performed. To study the sensor behavior and the suitability of BST as multifunctional material under harsh environmental conditions, the sensor chip was exemplarily tested in a biogas digestate. Y1 - 2014 U6 - https://doi.org/10.1002/elan.201400076 SN - 1521-4109 (E-Journal); 1040-0397 (Print) VL - 26 IS - 5 SP - 980 EP - 987 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wu, Chunsheng A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Bäcker, Matthias A1 - Schöning, Michael Josef T1 - Label-free electrical detection of DNA with a multi-spot LAPS: First step towards light-addressable DNA chips JF - Physica status solidi A : Applications and materials science N2 - A multi-spot (4 × 4 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al–p-Si–SiO2 structure has been applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. Single-stranded probe ssDNA molecules (20 bases) were covalently immobilized onto the silanized SiO2 gate surface. The unspecific adsorption of mismatch ssDNA on the MLAPS gate surface was blocked by bovine serum albumin molecules. To reduce the screening effect and to achieve a high sensor signal, the measurements were performed in a low ionic-strength solution. The photocurrent–voltage (I–V) curves were simultaneously recorded on all 16 spots after each surface functionalization step. Large shifts of I–V curves of 25 mV were registered after the DNA immobilization and hybridization event. In contrast, a small potential shift (∼5 mV) was observed in case of mismatch ssDNA, revealing good specificity of the sensor. The obtained results demonstrate the potential of the MLAPS as promising transducer platform for the multi-spot label-free electrical detection of DNA molecules by their intrinsic molecular charge. Y1 - 2014 U6 - https://doi.org/10.1002/pssa.201330442 SN - 1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1423 EP - 1428 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Holtrup, S. A1 - Sadeghfam, Arash A1 - Heuermann, Holger A1 - Awakowicz, P. T1 - Characterization and optimization technique for microwave-driven high-intensity discharge lamps using hot S-parameters JF - IEEE transactions on microwave theories and techniques N2 - High-intensity discharge lamps can be driven by radio-frequency signals in the ISM frequency band at 2.45 GHz, using a matching network to transform the impedance of the plasma to the source impedance. To achieve an optimal operating condition, a good characterization of the lamp in terms of radio frequency equivalent circuits under operating conditions is necessary, enabling the design of an efficient matching network. This paper presents the characterization technique for such lamps and presents the design of the required matching network. For the characterization, a high-intensity discharge lamp was driven by a monofrequent large signal at 2.45 GHz, whereas a frequency sweep over 300 MHz was performed across this signal to measure so-called small-signal hot S-parameters using a vector network analyzer. These parameters are then used as an equivalent load in a circuit simulator to design an appropriate matching network. Using the measured data as a black-box model in the simulation results in a quick and efficient method to simulate and design efficient matching networks in spite of the complex plasma behavior. Furthermore, photometric analysis of high-intensity discharge lamps are carried out, comparing microwave operation to conventional operation. Y1 - 2014 U6 - https://doi.org/10.1109/TMTT.2014.2342652 SN - 0018-9480 VL - 62 IS - 10 SP - 2471 EP - 2480 PB - IEEE CY - New York ER - TY - JOUR A1 - Laack, Walter van T1 - Therefore Fermat is right JF - American journal of humanities and social sciences : AJHSS N2 - It was Fernat's idea to investigate how many numbers would fulfill the equation according to the Pythagorean Theorem if the exponent were increased to random, e.g. to a3 + b3 = c3. His question became therefore: are there two whole numbers the cubes of which add up to the volume of the cube of a third whole number? He posed this same question, of course, for all kinds of higher exponents, so that the equation could be generalized: is there an integral solution for the equation an + bn = cn, if the exponent n is higher than 2? Although in 1993, the English mathematician Andrew Wiles was able to produce an arithmetical proof for Fermat's famous theorem, I will show that there is a simple logical explanation which is also pragmatic and plausible and what is the result of a fundamental alternative idea how our world seems to be constructed. Y1 - 2014 SN - 2329-079X (E-Journal); 2329-0781 (Print) VL - 2 IS - 2 SP - 117 EP - 120 ER - TY - JOUR A1 - Laack, Walter van T1 - Nature is much smarter than expected: the Genetic Code is not degenerate JF - American journal of humanities and social sciences N2 - In any books about genetics it can still today be read that our genetic code is called “degenerate” because it is still believed that 43 = 64 triplets encode the 20 essential amino acids. Indeed we have to assume the inverse law, what means that 34 = 81 exact code positions are really effective for our genetic code and encode the amino acids, compiled to proteins. This very important discovery leads to two completely new results that are limits-overlooking: 1) 34 (=81) genetic code positions mean exactly the same number as there are stable and naturally existing chemical elements in our universe. This famous argument should now lead to some alternative, as well as new fundamental conclusions about our existence. 2) A genetic code positioning system shows that nature is much smarter than expected: mutations are made less dangerous than believed, because they won't be that easily able any more to cause severe damages in the protein-synthesis. This should also lead to some alternative views upon evolution of life. Y1 - 2014 SN - 2329-0781 (Print) ; 2329-079X (Online) VL - Vol. 2 IS - No. 1 SP - 10 EP - 12 ER - TY - JOUR A1 - Beck, Daniel A1 - Buchleitner, Martin A1 - Ferrein, Alexander A1 - Niemüller, Tim A1 - Steinbauer, Gerald T1 - Mostly Harmless & AllemaniACs - mixed innovations Y1 - 2014 SP - 1 EP - 8 ER - TY - JOUR A1 - Bronder, Thomas A1 - Wu, Chunsheng A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Label-free detection of DNA hybridization with light-addressable potentiometric sensors: comparison of various DNA-immobilization strategies JF - Procedia Engineering N2 - Light-addressable potentiometric sensors (LAPS) consisting of a p-Si-SiO2 and p-Si-SiO2-Au structure, respectively, have been tested for a label-free electrical detection of DNA (deoxyribonucleic acid) hybridization. Three different strategies for immobilizing single-stranded probe DNA (ssDNA) molecules on a LAPS surface have been studied and compared: (a) immobilization of thiol-modified ssDNA on the patterned Au surface via gold-thiol bond, (b) covalent immobilization of amino-modified ssDNA onto the SiO2 surface functionalized with 3-aminopropyltriethoxysilane and (c) layer-by-layer adsorption of negatively charged ssDNA on a positively charged weak polyelectrolyte layer of poly(allylamine hydrochloride). KW - LAPS KW - lable-free detection KW - DNA hybridization KW - field-effect sensor Y1 - 2014 U6 - https://doi.org/10.1016/j.proeng.2014.11.647 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 755 EP - 758 PB - Elsevier CY - Amsterdam ER -