TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Bing, Yu A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Visualization of Defects on a Cultured Cell Layer by Utilizing Chemical Imaging Sensor JF - Procedia Engineering N2 - The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) inthe sample. In this study, a novel wound-healing assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the defect of a cell layer brought into proximity of the sensing surface.A reduced impedance inside the defect, which was artificially formed ina cell layer, was successfully visualized in a photocurrent image. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.806 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 936 EP - 939 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Moritz, Werner A1 - Finger, Friedhelm A1 - Schöning, Michael Josef ED - Comini, Elisabetta T1 - Application of thin-film amorphous silicon to chemical imaging JF - Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A. Y1 - 2006 SN - 9781558998711 N1 - Materials Research Society symposia proceedings; v. 915 IS - Paper 0910-A-20-01 SP - 1 EP - 10 ER - TY - JOUR A1 - Miyamato, Ko-ichiro A1 - Sakakita, Sakura A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface JF - Electrochimica Acta N2 - The chemical imaging sensor was applied to in-situ pH imaging of the solution in the vicinity of a corroding surface of stainless steel under potentiostatic polarization. A test piece of polished stainless steel was placed on the sensing surface leaving a narrow gap filled with artificial seawater and the stainless steel was corroded under polarization. The pH images obtained during polarization showed correspondence between the region of lower pH and the site of corrosion. It was also found that the pH value in the gap became as low as 2 by polarization, which triggered corrosion. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.electacta.2015.07.184 SN - 0013-4686 VL - 183 SP - 137 EP - 142 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wagner, Torsten A1 - Vornholt, Wolfgang A1 - Werner, Frederik A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-Ichiro A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensor (LAPS) combined with magnetic beads for pharmaceutical screening JF - Physics in medicine N2 - The light-addressable potentiometric sensor (LAPS) has the unique feature to address different regions of a sensor surface without the need of complex structures. Measurements at different locations on the sensor surface can be performed in a common analyte solution, which distinctly simplifies the fluidic set-up. However, the measurement in a single analyte chamber prevents the application of different drugs or different concentrations of a drug to each measurement spot at the same time as in the case of multi-reservoir-based set-ups. In this work, the authors designed a LAPS-based set-up for cell culture screening that utilises magnetic beads loaded with the endotoxin (lipopolysaccharides, LPS), to generate a spatially distributed gradient of analyte concentration. Different external magnetic fields can be adjusted to move the magnetic beads loaded with a specific drug within the measurement cell. By recording the metabolic activities of a cell layer cultured on top of the LAPS surface, this work shows the possibility to apply different concentrations of a sample along the LAPS measurement spots within a common analyte solution. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.phmed.2016.03.001 SN - 2352-4510 VL - 2016 IS - 1 SP - 2 EP - 7 ER - TY - JOUR A1 - Miyamoto, Ko-Ichiro A1 - Sato, Takuya A1 - Abe, Minami A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Light-addressable potentiometric sensor as a sensing element in plug-based microfluidic devices JF - Micromachines N2 - A plug-based microfluidic system based on the principle of the light-addressable potentiometric sensor (LAPS) is proposed. The LAPS is a semiconductor-based chemical sensor, which has a free addressability of the measurement point on the sensing surface. By combining a microfluidic device and LAPS, ion sensing can be performed anywhere inside the microfluidic channel. In this study, the sample solution to be measured was introduced into the channel in a form of a plug with a volume in the range of microliters. Taking advantage of the light-addressability, the position of the plug could be monitored and pneumatically controlled. With the developed system, the pH value of a plug with a volume down to 400 nL could be measured. As an example of plug-based operation, two plugs were merged in the channel, and the pH change was detected by differential measurement. KW - light-addressable potentiometric sensor KW - plug-based microfluidic device KW - chemical sensor Y1 - 2016 U6 - http://dx.doi.org/10.3390/mi7070111 SN - 2072-666X N1 - This article belongs to the Special Issue "Micro/Nano Devices for Chemical Analysis" VL - 7 IS - 7 SP - 111 PB - MDPI CY - Basel ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Werner, Frederik A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species JF - Annual Review of Analytical Chemistry N2 - A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed. Y1 - 2017 U6 - http://dx.doi.org/10.1146/annurev-anchem-061516-045158 SN - 1936-1327 VL - 10 SP - 225 EP - 246 PB - Annual Reviews CY - Palo Alto, Calif. ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Hayashi, Kosuke A1 - Sakamoto, Azuma A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance JF - Sensor and Actuators B: Chemical N2 - An EIS capacitive sensor is a semiconductor-based potentiometric sensor, which is sensitive to the ion concentration or pH value of the solution in contact with the sensing surface. To detect a small change in the ion concentration or pH, a small capacitance change must be detected. Recently, a resonance-mode measurement was proposed, in which an inductor was connected to the EIS capacitive sensor and the resonant frequency was correlated with the pH value. In this study, the Q factor of the resonant circuit was enhanced by canceling the internal resistance of the reference electrode and the internal resistance of the inductor coil with the help of a bypass capacitor and a negative impedance converter, respectively. 1% variation of the signal in the developed system corresponded to a pH change of 3.93 mpH, which was about 1/12 of the conventional method, suggesting a better performance in detection of a small pH change. KW - Negative impedance convertor KW - Resonance-mode measurement KW - Chemical sensor KW - EIS capacitive sensor Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.03.002 SN - 0925-4005 VL - 248 SP - 1006 EP - 1010 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Lateral resolution enhancement of pulse-driven light-addressable potentiometric sensor JF - Sensor and Actuators B: Chemical N2 - To study chemical and biological processes, spatially resolved determination of the concentrations of one or more analyte species is of distinct interest. With a light-addressable potentiometric sensor (LAPS), chemical images can be created, which visualize the concentration distribution above the sensor plate. One important challenge is to achieve a good lateral resolution in order to detect events that take place in a small and limited region. LAPS utilizes a focused light spot to address the measurement region. By moving this light spot along the semiconductor sensor plate, the concentration distribution can be observed. In this study, we show that utilizing a pulse as light excitation instead of a traditionally used continuously modulated light excitation, the lateral resolution can be improved by a factor of 6 or more. KW - Chemical images KW - LAPS KW - Light-addressable potentiometric sensor Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.02.057 SN - 0925-4005 VL - 248 SP - 961 EP - 965 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Koichiro A1 - Seki, Kosuke A1 - Suto, Takeyuki A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Improved spatial resolution of the chemical imaging sensor with a hybrid illumination that suppresses lateral diffusion of photocarriers JF - Sensor and Actuators B: Chemical N2 - The chemical imaging sensor is a semiconductor-based chemical sensor capable of visualizing pH and ion distributions. The spatial resolution depends on the lateral diffusion of photocarriers generated by illumination of the semiconductor substrate. In this study, two types of optical setups, one based on a bundle of optical fibers and the other based on a binocular tube head, were developed to project a hybrid illumination of a modulated light beam and a ring-shaped constant illumination onto the sensor plate. An improved spatial resolution was realized by the ring-shaped constant illumination, which suppressed lateral diffusion of photocarriers by enhanced recombination due to the increased carrier concentration. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.snb.2018.07.016 SN - 0925-4005 VL - 273 SP - 1328 EP - 1333 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Frequency behaviour of light-addressable potentiometric sensors JF - Physica Status Solidi (A) N2 - Light-addressable potentiometric sensors (LAPS) are semiconductor-based potentiometric sensors, with the advantage to detect the concentration of a chemical species in a liquid solution above the sensor surface in a spatially resolved manner. The addressing is achieved by a modulated and focused light source illuminating the semiconductor and generating a concentration-depending photocurrent. This work introduces a LAPS set-up that is able to monitor the electrical impedance in addition to the photocurrent. The impedance spectra of a LAPS structure, with and without illumination, as well as the frequency behaviour of the LAPS measurement are investigated. The measurements are supported by electrical equivalent circuits to explain the impedance and the LAPS-frequency behaviour. The work investigates the influence of different parameters on the frequency behaviour of the LAPS. Furthermore, the phase shift of the photocurrent, the influence of the surface potential as well as the changes of the sensor impedance will be discussed. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200929 SN - 1521-396X ; 0031-8965 VL - 210 IS - 5 SP - 884 EP - 891 PB - Wiley-VCH CY - Weinheim ER -