TY - JOUR A1 - Niehaus, F. A1 - Gabor, E. A1 - Wieland, S. A1 - Siegert, Petra A1 - Maurer, Karl-Heinz A1 - Eck, J. T1 - Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases JF - Microbial biotechnology Y1 - 2011 SN - 1432-0614 (E-Journal); 0171-1741 (Print); 0175-7598 (Print); 0340-2118 (Print) VL - Vol. 4 IS - Iss. 6 SP - 767 EP - 776 PB - Springer CY - Berlin ER - TY - JOUR A1 - Elbers, Gereon A1 - Remme, S. A1 - Lehmann, G. T1 - EPR and Optical Absorption of Cr3+ in CsCl and CsBr JF - Physica Status Solidi (B). 142 (1987), H. 2 Y1 - 1987 SN - 0031-8957 SP - 367 EP - 377 ER - TY - JOUR A1 - Elbers, Gereon A1 - Remme, S. A1 - Lehmann, G. T1 - EPR of Cr3+ in Tris(acetylacetonato)gallium(III) Single Crystals JF - Inorganic Chemistry. 25 (1986) Y1 - 1986 SN - 0020-1669 SP - 896 EP - 897 ER - TY - JOUR A1 - Sieker, Tim A1 - Neuner, Andreas A1 - Dimitrova, Darina A1 - Tippkötter, Nils A1 - Muffler, Kai A1 - Bart, Hans-Jörg A1 - Heinzle, Elmar A1 - Ulber, Roland T1 - Ethanol production from grass silage by simultaneous pretreatment, saccharification and fermentation: First steps in the process development JF - Engineering in Life Sciences N2 - Grass silage provides a great potential as renewable feedstock. Two fractions of the grass silage, a press juice and the fiber fraction, were evaluated for their possible use for bioethanol production. Direct production of ethanol from press juice is not possible due to high concentrations of organic acids. For the fiber fraction, alkaline peroxide or enzymatic pretreatment was used, which removes the phenolic acids in the cell wall. In this study, we demonstrate the possibility to integrate the enzymatic pretreatment with a simultaneous saccharification and fermentation to achieve ethanol production from grass silage in a one-process step. Achieved yields were about 53 g ethanol per kg silage with the alkaline peroxide pretreatment and 91 g/kg with the enzymatic pretreatment at concentrations of 8.5 and 14.6 g/L, respectively. Furthermore, it was shown that additional supplementation of the fermentation medium with vitamins, trace elements and nutrient salts is not necessary when the press juice is directly used in the fermentation step. Y1 - 2011 U6 - http://dx.doi.org/10.1002/elsc.201000160 N1 - Special Issue "Bioprocess‐oriented plant design" VL - 11 IS - 4 SP - 436 EP - 442 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Roth, Jasmine A1 - Tippkötter, Nils T1 - Evaluation of lignocellulosic material for butanol production using enzymatic hydrolysate medium JF - Cellulose Chemistry and Technology N2 - Butanol is a promising gasoline additive and platform chemical that can be readily produced via acetone-butanolethanol (ABE) fermentation from pretreated lignocellulosic materials. This article examines lignocellulosic material from beech wood for ABE fermentation, using Clostridium acetobutylicum. First, the utilization of both C₅₋ (xylose) and C₆₋ (glucose) sugars as sole carbon source was investigated in static cultivation, using serum bottles and synthetic medium. The utilization of pentose sugar resulted in a solvent yield of 0.231 g·g_sugar⁻¹, compared to 0.262 g·g_sugar⁻¹ using hexose. Then, the Organosolv pretreated crude cellulose fibers (CF) were enzymatically decomposed, and the resulting hydrolysate medium was analyzed for inhibiting compounds (furans, organic acids, phenolics) and treated with ionexchangers for detoxification. Batch fermentation in a bioreactor using CF hydrolysate medium resulted in a total solvent yield of 0.20 gABE·g_sugar⁻¹. Y1 - 2016 VL - 50 IS - 3-4 SP - 405 EP - 410 PB - Editura Academiei Romane CY - Bukarest ER - TY - JOUR A1 - Salpati, Laurent A1 - Chu, Xiaoyan A1 - Chen, Liangfu A1 - Prasad, Bhagwat A1 - Dallas, Shannon A1 - Evers, Raymond A1 - Mamaril-Fishman, Donna A1 - Geier, Ethan G. A1 - Kehler, Jonathan A1 - Kunta, Jeevan A1 - Mezler, Mario A1 - Laplanche, Loic A1 - Pang, Jodie A1 - Soars, Matthew G. A1 - Unadkat, Jashvant D. A1 - van Waterschoot, Robert A.B. A1 - Yabut, Jocelyn A1 - Schinkel, Alfred H. A1 - Scheer, Nico A1 - Rode, Anja T1 - Evaluation of organic anion transporting polypeptide 1B1 and 1B3 humanized mice as a translational model to study the pharmacokinetics of statins JF - Drug Metabolism and Disposition N2 - Organic anion transporting polypeptide (Oatp) 1a/1b knockout and OATP1B1 and -1B3 humanized mouse models are promising tools for studying the roles of these transporters in drug disposition. Detailed characterization of these models will help to better understand their utility for predicting clinical outcomes. To advance this approach, we carried out a comprehensive analysis of these mouse lines by evaluating the compensatory changes in mRNA expression, quantifying the amounts of OATP1B1 and -1B3 protein by liquid chromatography–tandem mass spectrometry, and studying the active uptake in isolated hepatocytes and the pharmacokinetics of some prototypical substrates including statins. Major outcomes from these studies were 1) mostly moderate compensatory changes in only a few genes involved in drug metabolism and disposition, 2) a robust hepatic expression of OATP1B1 and -1B3 proteins in the respective humanized mouse models, and 3) functional activities of the human transporters in hepatocytes isolated from the humanized models with several substrates tested in vitro and with pravastatin in vivo. However, the expression of OATP1B1 and -1B3 in the humanized models did not significantly alter liver or plasma concentrations of rosuvastatin and pitavastatin compared with Oatp1a/1b knockout controls under the conditions used in our studies. Hence, although the humanized OATP1B1 and -1B3 mice showed in vitro and/or in vivo functional activity with some statins, further characterization of these models is required to define their potential use and limitations in the prediction of drug disposition and drug-drug interactions in humans. Y1 - 2014 U6 - http://dx.doi.org/10.1124/dmd.114.057976 SN - 1521-009X VL - 42 IS - 8 SP - 1301 EP - 1313 PB - ASPET CY - Bethesda, Md. ER - TY - JOUR A1 - Eckert, Alexander A1 - Rudolph, Tobias A1 - Guo, Jiaqi A1 - Mang, Thomas A1 - Walther, Andreas T1 - Exceptionally Ductile and Tough Biomimetic Artificial Nacre with Gas Barrier Function JF - Advanced Materials N2 - Synthetic mimics of natural high-performance structural materials have shown great and partly unforeseen opportunities for the design of multifunctional materials. For nacre-mimetic nanocomposites, it has remained extraordinarily challenging to make ductile materials with high stretchability at high fractions of reinforcements, which is however of crucial importance for flexible barrier materials. Here, highly ductile and tough nacre-mimetic nanocomposites are presented, by implementing weak, but many hydrogen bonds in a ternary nacre-mimetic system consisting of two polymers (poly(vinyl amine) and poly(vinyl alcohol)) and natural nanoclay (montmorillonite) to provide efficient energy dissipation and slippage at high nanoclay content (50 wt%). Tailored interactions enable exceptional combinations of ductility (close to 50% strain) and toughness (up to 27.5 MJ m⁻³). Extensive stress whitening, a clear sign of high internal dynamics at high internal cohesion, can be observed during mechanical deformation, and the materials can be folded like paper into origami planes without fracture. Overall, the new levels of ductility and toughness are unprecedented in highly reinforced bioinspired nanocomposites and are of critical importance to future applications, e.g., as barrier materials needed for encapsulation and as a printing substrate for flexible organic electronics. Y1 - 2018 U6 - http://dx.doi.org/10.1002/adma.201802477 VL - 30 IS - 32 SP - Article number 1802477 PB - Wiley-VCH ER - TY - JOUR A1 - Siegert, Petra A1 - McLeish, Michael J. A1 - Baumann, Martin A1 - Iding, Hans A1 - Kneen, Malea M. A1 - Kenyon, George L. A1 - Pohl, Martina T1 - Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida JF - Protein engineering, design, and selection : peds Y1 - 2005 SN - 1460-213X (E-Journal); 1741-0134 (E-Journal); 0269-2139 (Print); 1741-0126 (Print) VL - Vol. 18 IS - Iss. 7 SP - 345 EP - 357 ER - TY - CHAP A1 - Siegert, Petra A1 - Pohl, Martina A1 - Kneen, Malea M. A1 - Pogozheva, Irina D. A1 - Kenyon, George L. A1 - McLeish, Michael J. T1 - Exploring the substrate specificity of benzoylformate decarboxylase, pyruvate decarboxylase, and benzaldehyde lyase T2 - Thiamine : catalytic mechanisms in normal and disease states / ed. by Frank Jordan ... Y1 - 2004 SN - 0-8247-4062-9 SP - 275 EP - 290 PB - Dekker CY - New York, NY ER - TY - JOUR A1 - Ribitsch, D. A1 - Heumann, S. A1 - Karl, W. A1 - Gerlach, J. A1 - Leber, R. A1 - Birner-Gruenberger, R. A1 - Gruber, K. A1 - Eiteljoerg, I. A1 - Remler, P. A1 - Siegert, Petra A1 - Lange, J. A1 - Maurer, Karl-Heinz A1 - Berg, G. A1 - Guebitz, G. M. A1 - Schwab, H. T1 - Extracellular serine proteases from Stenotrophomonas maltophilia: Screening, isolation and heterologous expression in E. coli JF - Journal of biotechnology N2 - A large strain collection comprising antagonistic bacteria was screened for novel detergent proteases. Several strains displayed protease activity on agar plates containing skim milk but were inactive in liquid media. Encapsulation of cells in alginate beads induced protease production. Stenotrophomonas maltophilia emerged as best performer under washing conditions. For identification of wash-active proteases, four extracellular serine proteases called StmPr1, StmPr2, StmPr3 and StmPr4 were cloned. StmPr2 and StmPr4 were sufficiently overexpressed in E. coli. Expression of StmPr1 and StmPr3 resulted in unprocessed, insoluble protein. Truncation of most of the C-terminal domain which has been identified by enzyme modeling succeeded in expression of soluble, active StmPr1 but failed in case of StmPr3. From laundry application tests StmPr2 turned out to be a highly wash-active protease at 45 °C. Specific activity of StmPr2 determined with suc-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide as the substrate was 17 ± 2 U/mg. In addition we determined the kinetic parameters and cleavage preferences of protease StmPr2. KW - Alginate beads KW - Stenotrophomonas maltophilia KW - Detergent protease Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.jbiotec.2011.09.025 SN - 1873-4863 (E-Journal); 0168-1656 (Print) VL - 157 IS - 1 SP - 140 EP - 147 PB - Elsevier CY - Amsterdam ER -