TY - CHAP A1 - Niemueller, Tim A1 - Reuter, Sebastian A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard ED - Almeida, Luis T1 - Evaluation of the RoboCup Logistics League and Derived Criteria for Future Competitions T2 - RoboCup 2015: Robot World Cup XIX Y1 - 2016 SN - 978-3-319-29339-4 U6 - https://doi.org/10.1007/978-3-319-29339-4_3 N1 - Lecture Notes in Computer Science ; 9513 SP - 31 EP - 43 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Leingartner, Max A1 - Maurer, Johannes A1 - Steinbauer, Gerald A1 - Ferrein, Alexander T1 - Evaluation of sensors and mapping approaches for disasters in tunnels T2 - IEEE International Symposium on Safety, Security, and Rescue Robotics : SSRR : 21-26 Oct. 2013, Linkoping, Sweden Y1 - 2013 SN - 978-1-4799-0879-0 SP - 1 EP - 7 ER - TY - CHAP A1 - Stopforth, Riaan A1 - Ferrein, Alexander A1 - Steinbauer, Gerald T1 - Europe and South African collaboration on the Mechatronics and Robotics systems as part of the SA Robotics Center T2 - ICRA 2015 Developing Countries Forum N2 - Mechatronics consist of the integration of mechanical engineering, electronic integration and computer science/ engineering. These broad fields are essential for robotic systems, yet it makes it difficult for the researchers to specialize and be experts in all these fields. Collaboration between researchers allow for the integration of experience and specialization, to allow optimized systems. Collaboration between the European countries and South Africa is critical, as each country has different resources available, which the other countries might not have. Applications with the need for approval of any restrictions, can also be obtained easier in some countries compared to others, thus preventing the delays of research. Some problems that have been experienced are discussed, with the Robotics Center of South Africa as a possible solution. Y1 - 2015 ER - TY - CHAP A1 - Schleupen, Josef A1 - Engemann, Heiko A1 - Bagheri, Mohsen A1 - Kallweit, Stephan A1 - Dahmann, Peter T1 - Developing a climbing maintenance robot for tower and rotor blade service of wind turbines T2 - Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16) Y1 - 2017 SN - 978-3-319-49058-8 U6 - https://doi.org/10.1007/978-3-319-49058-8_34 N1 - Advances in Robot Design and Intelligent Control ; Vol. 540 SP - 310 EP - 319 PB - Springer CY - Cham ER - TY - CHAP A1 - Stopforth, Riaan A1 - Davrajh, Shaniel A1 - Ferrein, Alexander T1 - Design considerations of the duo fugam dual rotor UAV T2 - 2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech) Y1 - 2017 SN - 978-1-5386-2314-5 U6 - https://doi.org/10.1109/RoboMech.2017.8261115 SP - 7 EP - 13 ER - TY - CHAP A1 - Schulte-Tigges, Joschua A1 - Matheis, Dominik A1 - Reke, Michael A1 - Walter, Thomas A1 - Kaszner, Daniel ED - Krömker, Heidi T1 - Demonstrating a V2X enabled system for transition of control and minimum risk manoeuvre when leaving the operational design domain T2 - HCII 2023: HCI in Mobility, Transport, and Automotive Systems N2 - Modern implementations of driver assistance systems are evolving from a pure driver assistance to a independently acting automation system. Still these systems are not covering the full vehicle usage range, also called operational design domain, which require the human driver as fall-back mechanism. Transition of control and potential minimum risk manoeuvres are currently research topics and will bridge the gap until full autonomous vehicles are available. The authors showed in a demonstration that the transition of control mechanisms can be further improved by usage of communication technology. Receiving the incident type and position information by usage of standardised vehicle to everything (V2X) messages can improve the driver safety and comfort level. The connected and automated vehicle’s software framework can take this information to plan areas where the driver should take back control by initiating a transition of control which can be followed by a minimum risk manoeuvre in case of an unresponsive driver. This transition of control has been implemented in a test vehicle and was presented to the public during the IEEE IV2022 (IEEE Intelligent Vehicle Symposium) in Aachen, Germany. KW - V2X KW - Transiton of Control KW - Minimum Risk Manoeuvre KW - Operational Design Domain KW - Connected Automated Vehicle Y1 - 2023 SN - 978-3-031-35677-3 (Print) SN - 978-3-031-35678-0 (Online) U6 - https://doi.org/10.1007/978-3-031-35678-0_12 N1 - 5th International Conference, MobiTAS 2023, Held as Part of the 25th HCI International Conference, HCII 2023, Copenhagen, Denmark, July 23–28, 2023. SP - 200 EP - 210 PB - Springer CY - Cham ER - TY - CHAP A1 - Ferrein, Alexander A1 - Maier, Christopher A1 - Mühlbacher, Clemens A1 - Niemüller, Tim A1 - Steinbauer, Gerald A1 - Vassos, Stravros T1 - Controlling logistics robots with the action-based language YAGI T2 - Intelligent Robotics and Applications: 9th International Conference, ICIRA 2016, Tokyo, Japan, August 22-24, 2016, Proceedings, Part I Y1 - 2016 SN - 978-3-319-43505-3 (Print) SN - 978-3-319-43506-0 (Online) U6 - https://doi.org/10.1007/978-3-319-43506-0_46 N1 - Series: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) VL - 9834 SP - 525 EP - 537 PB - Springer ER - TY - CHAP A1 - Ferrein, Alexander A1 - Maier, Christopher A1 - Mühlbacher, Clemens A1 - Niemueller, Tim A1 - Steinbauer, Gerald A1 - Vassos, Stravros T1 - Controlling Logistics Robots with the Action-based Language YAGI T2 - Proceedings of the 2015 IROS Workshop on Workshop on Task Planning for Intelligent Robots in Service and Manufacturing Y1 - 2015 ER - TY - CHAP A1 - Ferrein, Alexander A1 - Meeßen, Marcus A1 - Limpert, Nicolas A1 - Schiffer, Stefan ED - Lepuschitz, Wilfried T1 - Compiling ROS schooling curricula via contentual taxonomies T2 - Robotics in Education N2 - The Robot Operating System (ROS) is the current de-facto standard in robot middlewares. The steadily increasing size of the user base results in a greater demand for training as well. User groups range from students in academia to industry professionals with a broad spectrum of developers in between. To deliver high quality training and education to any of these audiences, educators need to tailor individual curricula for any such training. In this paper, we present an approach to ease compiling curricula for ROS trainings based on a taxonomy of the teaching contents. The instructor can select a set of dedicated learning units and the system will automatically compile the teaching material based on the dependencies of the units selected and a set of parameters for a particular training. We walk through an example training to illustrate our work. Y1 - 2021 SN - 978-3-030-67411-3 U6 - https://doi.org/10.1007/978-3-030-67411-3_5 N1 - RiE: International Conference on Robotics in Education (RiE); Advances in Intelligent Systems and Computing book series (AISC, volume 1316) SP - 49 EP - 60 PB - Springer CY - Cham ER - TY - CHAP A1 - Steinbauer, Gerald A1 - Ferrein, Alexander T1 - CogRob 2018 : Cognitive Robotics Workshop. Proceedings of the 11th Cognitive Robotics Workshop 2018 co-located with 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018). Tempe, AZ, USA, October 27th, 2018. T2 - CEUR workshop proceedings Y1 - 2019 SN - 1613-0073 N1 - edited by Gerald Steinbauer, Alexander Ferrein IS - Vol-2325 ER -