TY - CHAP A1 - Duong, Minh Tuan A1 - Nguyen, Nhu Huynh A1 - Staat, Manfred T1 - Physical response of hyperelastic models for composite materials and soft tissues T2 - Advances in Composite Material Y1 - 2017 SN - 978-1-61896-300-0 (Hardcover), 978-1-61896-299-7 (Paperback) N1 - Chapter 5 PB - Scientific Research Publishing CY - Wuhan ER - TY - JOUR A1 - Pilas, Johanna A1 - Yazici, Yasemen A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Optimization of an amperometric biosensor array for simultaneous measurement of ethanol, formate, d- and l-lactate JF - Electrochimica Acta N2 - The immobilization of NAD+-dependent dehydrogenases, in combination with a diaphorase, enables the facile development of multiparametric sensing devices. In this work, an amperometric biosensor array for simultaneous determination of ethanol, formate, d- and l-lactate is presented. Enzyme immobilization on platinum thin-film electrodes was realized by chemical cross-linking with glutaraldehyde. The optimization of the sensor performance was investigated with regard to enzyme loading, glutaraldehyde concentration, pH, cofactor concentration and temperature. Under optimal working conditions (potassium phosphate buffer with pH 7.5, 2.5 mmol L-1 NAD+, 2.0 mmol L-1 ferricyanide, 25 °C and 0.4% glutaraldehyde) the linear working range and sensitivity of the four sensor elements was improved. Simultaneous and cross-talk free measurements of four different metabolic parameters were performed successfully. The reliable analytical performance of the biosensor array was demonstrated by application in a clarified sample of inoculum sludge. Thereby, a promising approach for on-site monitoring of fermentation processes is provided. KW - Simultaneous determination KW - Enzymatic biosensor KW - Diaphorase KW - Dehydrogenase Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.electacta.2017.07.119 SN - 0013-4686 VL - 251 SP - 256 EP - 262 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Damm, Marc André A1 - Sauerborn, Markus A1 - Fend, Thomas A1 - Herrmann, Ulf T1 - Optimisation of a urea selective catalytic reduction system with a coated ceramic mixing element JF - Journal of ceramic science and technology Y1 - 2017 SN - 2190-9385 (Print) U6 - http://dx.doi.org/10.4416/JCST2016-00056 SN - 2190-9385 (Online) VL - 8 IS - 1 SP - 19 EP - 24 PB - Göller CY - Baden-Baden ER - TY - JOUR A1 - Baringhaus, Ludwig A1 - Gaigall, Daniel T1 - On Hotelling’s T² test in a special paired sample case JF - Communications in Statistics - Theory and Methods N2 - In a special paired sample case, Hotelling’s T² test based on the differences of the paired random vectors is the likelihood ratio test for testing the hypothesis that the paired random vectors have the same mean; with respect to a special group of affine linear transformations it is the uniformly most powerful invariant test for the general alternative of a difference in mean. We present an elementary straightforward proof of this result. The likelihood ratio test for testing the hypothesis that the covariance structure is of the assumed special form is derived and discussed. Applications to real data are given. KW - complete block symmetry KW - Hotelling’s T² test KW - likelihood ratio test KW - uniformly most powerful invariant test Y1 - 2017 U6 - http://dx.doi.org/10.1080/03610926.2017.1408828 SN - 1532-415X VL - 48 IS - 2 SP - 257 EP - 267 PB - Taylor & Francis CY - London ER - TY - CHAP A1 - Valero, Daniel A1 - Bung, Daniel B. A1 - Erpicum, Sebastien A1 - Dewals, Benjamin T1 - Numerical study of turbulent oscillations around a cylinder: RANS capabilities and sensitivity analysis T2 - Proceedings of the 37th IAHR World Congress August 13 – 18, 2017, Kuala Lumpur, Malaysia Y1 - 2017 SN - 2521-716X SP - 3126 EP - 3135 ER - TY - CHAP A1 - Striegan, C. A1 - Haj Ayed, A. A1 - Funke, Harald A1 - Loechle, S. A1 - Kazari, M. A1 - Horikawa, A. A1 - Okada, K. A1 - Koga, K. T1 - Numerical combustion and heat transfer simulations and validation for a hydrogen fueled "micromix" test combustor in industrial gas turbine applications T2 - Proceedings of the ASME Turbo Expo Y1 - 2017 SN - 978-079185085-5 U6 - http://dx.doi.org/10.1115/GT2017-64719 N1 - ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017; Charlotte; United States; 26 June 2017 through 30 June 2017 IS - Volume Part F130041-4B, 2017 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Abanteriba, Sylvester T1 - Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications T2 - Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26–30, 2017 N2 - The Dry-Low-NOx (DLN) Micromix combustion technology has been developed originally as a low emission alternative for industrial gas turbine combustors fueled with hydrogen. Currently the ongoing research process targets flexible fuel operation with hydrogen and syngas fuel. The non-premixed combustion process features jet-in-crossflow-mixing of fuel and oxidizer and combustion through multiple miniaturized flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. The paper presents the results of a numerical and experimental combustor test campaign. It is conducted as part of an integration study for a dual-fuel (H2 and H2/CO 90/10 Vol.%) Micromix combustion chamber prototype for application under full scale, pressurized gas turbine conditions in the auxiliary power unit Honeywell Garrett GTCP 36-300. In the presented experimental studies, the integration-optimized dual-fuel Micromix combustor geometry is tested at atmospheric pressure over a range of gas turbine operating conditions with hydrogen and syngas fuel. The experimental investigations are supported by numerical combustion and flow simulations. For validation, the results of experimental exhaust gas analyses are applied. Despite the significantly differing fuel characteristics between pure hydrogen and hydrogen-rich syngas the evaluated dual-fuel Micromix prototype shows a significant low NOx performance and high combustion efficiency. The combustor features an increased energy density that benefits manufacturing complexity and costs. Y1 - 2017 SN - 978-0-7918-5085-5 U6 - http://dx.doi.org/10.1115/GT2017-64795 N1 - Paper No. GT2017-64795, V04BT04A045 PB - ASME CY - New York ER - TY - JOUR A1 - Wilke, Thomas T1 - Newly found plans for the chapel of the Holy Shroud JF - Studi Piemontesi Y1 - 2017 SN - 0392-7261 VL - XLVI IS - 1 SP - 75 EP - 85 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Nanomaterial-Modified Capacitive Field-Effect Biosensors T2 - Springer Series on Chemical Sensors and Biosensors (Methods and Applications) N2 - The coupling of charged molecules, nanoparticles, and more generally, inorganic/organic nanohybrids with semiconductor field-effect devices based on an electrolyte–insulator–semiconductor (EIS) system represents a very promising strategy for the active tuning of electrochemical properties of these devices and, thus, opening new opportunities for label-free biosensing by the intrinsic charge of molecules. The simplest field-effect sensor is a capacitive EIS sensor, which represents a (bio-)chemically sensitive capacitor. In this chapter, selected examples of recent developments in the field of label-free biosensing using nanomaterial-modified capacitive EIS sensors are summarized. In the first part, we present applications of EIS sensors modified with negatively charged gold nanoparticles for the label-free electrostatic detection of positively charged small proteins and macromolecules, for monitoring the layer-by-layer formation of oppositely charged polyelectrolyte (PE) multilayers as well as for the development of an enzyme-based biomolecular logic gate. In the second part, examples of a label-free detection by means of EIS sensors modified with a positively charged weak PE layer are demonstrated. These include electrical detection of on-chip and in-solution hybridized DNA (deoxyribonucleic acid) as well as an EIS sensor with pH-responsive weak PE/enzyme multilayers for enhanced field-effect biosensing. KW - Biomolecular logic gate KW - DNA KW - Enzyme biosensor KW - Field-effect sensor KW - Gold nanoparticle Y1 - 2017 U6 - http://dx.doi.org/10.1007/5346_2017_2 SP - 1 EP - 25 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Morais, Paulo V. A1 - Gomes, Vanderley F., Jr. A1 - Silva, Anielle C. A. A1 - Dantas, Noelio O. A1 - Schöning, Michael Josef A1 - Siqueira, José R., Jr. T1 - Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices JF - Journal of Materials Science N2 - The incorporation of nanomaterials that are biocompatible with different types of biological compounds has allowed the development of a new generation of biosensors applied especially in the biomedical field. In particular, the integration of film-based nanomaterials employed in field-effect devices can be interesting to develop biosensors with enhanced properties. In this paper, we studied the fabrication of sensitive nanofilms combining ZnO nanocrystals and carbon nanotubes (CNTs), prepared by means of the layer-by-layer (LbL) technique, in a capacitive electrolyte-insulator-semiconductor (EIS) structure for detecting glucose and urea. The ZnO nanocrystals were incorporated in a polymeric matrix of poly(allylamine) hydrochloride (PAH), and arranged with multi-walled CNTs in a LbL PAH-ZnO/CNTs film architecture onto EIS chips. The electrochemical characterizations were performed by capacitance–voltage and constant capacitance measurements, while the morphology of the films was characterized by atomic force microscopy. The enzymes glucose oxidase and urease were immobilized on film’s surface for detection of glucose and urea, respectively. In order to obtain glucose and urea biosensors with optimized amount of sensitive films, we investigated the ideal number of bilayers for each detection system. The glucose biosensor showed better sensitivity and output signal for an LbL PAH-ZnO/CNTs nanofilm with 10 bilayers. On the other hand, the urea biosensor presented enhanced properties even for the first bilayer, exhibiting high sensitivity and output signal. The presence of the LbL PAH-ZnO/CNTs films led to biosensors with better sensitivity and enhanced response signal, demonstrating that the adequate use of nanostructured films is feasible for proof-of-concept biosensors with improved properties that may be employed for biomedical applications. Y1 - 2017 U6 - http://dx.doi.org/10.1007/s10853-017-1369-y SN - 1573-4803 VL - 52 IS - 20 SP - 12314 EP - 12325 PB - Springer CY - Berlin ER -