TY - CHAP A1 - Dachwald, Bernd T1 - Low-Thrust Mission Analysis and Global Trajectory Optimization Using Evolutionary Neurocontrol: New Results T2 - European Workshop on Space Mission Analysis ESA/ESOC, Darmstadt, Germany 10 { 12 Dec 2007 N2 - Interplanetary trajectories for low-thrust spacecraft are often characterized by multiple revolutions around the sun. Unfortunately, the convergence of traditional trajectory optimizers that are based on numerical optimal control methods depends strongly on an adequate initial guess for the control function (if a direct method is used) or for the starting values of the adjoint vector (if an indirect method is used). Especially when many revolutions around the sun are re- quired, trajectory optimization becomes a very difficult and time-consuming task that involves a lot of experience and expert knowledge in astrodynamics and optimal control theory, because an adequate initial guess is extremely hard to find. Evolutionary neurocontrol (ENC) was proposed as a smart method for low-thrust trajectory optimization that fuses artificial neural networks and evolutionary algorithms to so-called evolutionary neurocontrollers (ENCs) [1]. Inspired by natural archetypes, ENC attacks the trajectoryoptimization problem from the perspective of artificial intelligence and machine learning, a perspective that is quite different from that of optimal control theory. Within the context of ENC, a trajectory is regarded as the result of a spacecraft steering strategy that maps permanently the actual spacecraft state and the actual target state onto the actual spacecraft control vector. This way, the problem of searching the optimal spacecraft trajectory is equivalent to the problem of searching (or "learning") the optimal spacecraft steering strategy. An artificial neural network is used to implement such a spacecraft steering strategy. It can be regarded as a parameterized function (the network function) that is defined by the internal network parameters. Therefore, each distinct set of network parameters defines a different network function and thus a different steering strategy. The problem of searching the optimal steering strategy is now equivalent to the problem of searching the optimal set of network parameters. Evolutionary algorithms that work on a population of (artificial) chromosomes are used to find the optimal network parameters, because the parameters can be easily mapped onto a chromosome. The trajectory optimization problem is solved when the optimal chromosome is found. A comparison of solar sail trajectories that have been published by others [2, 3, 4, 5] with ENC-trajectories has shown that ENCs can be successfully applied for near-globally optimal spacecraft control [1, 6] and that they are able to find trajectories that are closer to the (unknown) global optimum, because they explore the trajectory search space more exhaustively than a human expert can do. The obtained trajectories are fairly accurate with respect to the terminal constraint. If a more accurate trajectory is required, the ENC-solution can be used as an initial guess for a local trajectory optimization method. Using ENC, low-thrust trajectories can be optimized without an initial guess and without expert attendance. Here, new results for nuclear electric spacecraft and for solar sail spacecraft are presented and it will be shown that ENCs find very good trajectories even for very difficult problems. Trajectory optimization results are presented for 1. NASA's Solar Polar Imager Mission, a mission to attain a highly inclined close solar orbit with a solar sail [7] 2. a mission to de ect asteroid Apophis with a solar sail from a retrograde orbit with a very-high velocity impact [8, 9] 3. JPL's \2nd Global Trajectory Optimization Competition", a grand tour to visit four asteroids from different classes with a NEP spacecraft Y1 - 2007 ER - TY - CHAP A1 - Wellmer, Georg A1 - Chen, B.-H. A1 - Braun, Carsten A1 - Ballmann, Josef T1 - Numerical prediction of aeroelastic effects on twin-sting-rig mounted models for rear fuselage and empennage flow investigation in transonic windtunnel T2 - Proceedings / IFASD 2007, CEAS/AIAA/KTH International Forum on Aeroelasticity and Structural Dynamics, June 18 - 21, 2007, Stockholm, Sweden Y1 - 2007 PB - KTH CY - Stockholm ER - TY - CHAP A1 - Weiss, Alexander A1 - Abanteriba, Sylvester A1 - Esch, Thomas T1 - Investigation of Flow Separation Inside a Conical Rocket Nozzle With the Aid of an Annular Cross Flow T2 - Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B N2 - Flow separation is a phenomenon that occurs in all kinds of supersonic nozzles sometimes during run-up and shut-down operations. Especially in expansion nozzles of rocket engines with large area ratio, flow separation can trigger strong side loads that can damage the structure of the nozzle. The investigation presented in this paper seeks to establish measures that may be applied to alter the point of flow separation. In order to achieve this, a supersonic nozzle was placed at the exit plane of the conical nozzle. This resulted in the generation of cross flow surrounding the core jet flow from the conical nozzle. Due to the entrainment of the gas stream from the conical nozzle the pressure in its exit plane was found to be lower than that of the ambient. A Cold gas instead of hot combustion gases was used as the working fluid. A mathematical simulation of the concept was validated by experiment. Measurements confirmed the simulation results that due to the introduction of a second nozzle the pressure in the separated region of the conical nozzle was significantly reduced. It was also established that the boundary layer separation inside the conical nozzle was delayed thus allowing an increased degree of overexpansion. The condition established by the pressure measurements was also demonstrated qualitatively using transparent nozzle configurations. Y1 - 2007 SN - 0-7918-4288-6 U6 - https://doi.org/10.1115/FEDSM2007-37387 N1 - Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B. San Diego, California, USA. July 30–August 2, 2007 SP - 1861 EP - 1871 PB - American Society of Mechanical Engineers (ASME) CY - New York ER - TY - CHAP A1 - Christen, Marc A1 - Bartelt, Perry A1 - Kowalski, Julia A1 - Stoffel, Lukus T1 - Calculation of dense snow avalanches in three-dimensional terrain with the numerical simulation programm RAMMS T2 - Proceedings ISSW 2008 ; International Snow Science Workshop. Whistler 2008 N2 - Numerical models have become an essential part of snow avalanche engineering. Recent advances in understanding the rheology of flowing snow and the mechanics of entrainment and deposition have made numerical models more reliable. Coupled with field observations and historical records, they are especially helpful in understanding avalanche flow in complex terrain. However, the application of numerical models poses several new challenges to avalanche engineers. A detailed understanding of the avalanche phenomena is required to specify initial conditions (release zone dimensions and snowcover entrainment rates) as well as the friction parameters, which are no longer based on empirical back-calculations, rather terrain roughness, vegetation and snow properties. In this paper we discuss these problems by presenting the computer model RAMMS, which was specially designed by the SLF as a practical tool for avalanche engineers. RAMMS solves the depth-averaged equations governing avalanche flow with first and second-order numerical solution schemes. A tremendous effort has been invested in the implementation of advanced input and output features. Simulation results are therefore clearly and easily visualized to simplify their interpretation. More importantly, RAMMS has been applied to a series of well-documented avalanches to gauge model performance. In this paper we present the governing differential equations, highlight some of the input and output features of RAMMS and then discuss the simulation of the Gatschiefer avalanche that occurred in April 2008, near Klosters/Monbiel, Switzerland. KW - snow KW - avalanche Y1 - 2008 SP - 709 EP - 716 ER - TY - CHAP A1 - Kowalski, Julia A1 - McElwaine, J. T1 - Two-phase debris flow modeling T2 - Geophysical Research Abstracts Y1 - 2008 N1 - A-01048 ER - TY - CHAP A1 - Nowack, N. A1 - Röth, Thilo A1 - Bührig-Polaczek, Andreas A1 - Klaus, G. ED - Hirsch, Jürgen T1 - Advanced Sheet Metal Components Reinforced by Light Metal Cast Structures T2 - Aluminium alloys : their physical and mechanical properties ; [proceedings of the 11th International Conference on Aluminium Alloys, 22 - 26 Sept. 2008, Aachen, Germany ; ICAA 11] Y1 - 2008 SN - 978-3-527-32367-8 IS - 2 SP - 2374 EP - 2381 ER - TY - CHAP A1 - Börner, Sebastian A1 - Funke, Harald A1 - Hendrick, P. A1 - Recker, E. T1 - LES of Jets In Cross-Flow and Application to the “Micromix” Hydrogen Combustion T2 - XIX International Symposium on Air Breathing Engines 2009 (ISABE 2009) : Proceedings of a meeting held 7-11 September 2009, Montreal, Canada Y1 - 2009 SN - 9781615676064 SP - 1555 EP - 1561 ER - TY - CHAP A1 - Kowalski, Julia A1 - Bugnion, Louis T1 - An extended shallow flow theory for natural debris flows Y1 - 2009 N1 - 2009 Portland GSA Annual Meeting (18-21 October 2009); Geological Society of America VL - 41 IS - 7 SP - 609 EP - 609 ER - TY - CHAP A1 - Röth, Thilo A1 - Stark, R. T1 - Die Rolle der virtuellen Produktentstehung bei der Integration von Karosseriesystemen T2 - Karosseriekongress Systemintegration in der Karosserietechnik : 17. und 18. März 2009 in Baden-Baden / Kongressleitung: Reiner Stark Y1 - 2009 SN - 978-3-9812624-4-5 N1 - Karosseriekongress ; (2009.03.17-18 : ; Baden-Baden) PB - VDI-Wissensforum CY - Düsseldorf ER - TY - CHAP A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Spurmann, J. A1 - Loeb, H. W. A1 - Schartner, Karl-Heinz A1 - Seboldt, Wolfgang T1 - Mission design for a SEP mission to saturn T2 - 60th International Astronautical Congress 2009 (IAC 2009) N2 - Within ESA's Cosmic Vision 2015-2025 plan, a mission to explore the Saturnian System, with special emphasis on its two moons Titan and Enceladus, was selected for study, termed TANDEM (Titan and Enceladus Mission). In this paper, we describe an optimized mission design for a TANDEM-derived solar electric propulsion (SEP) mission. We have chosen the SEP mission scenario for the interplanetary transfer of the TANDEM spacecraft because all feasible gravity assist sequences for a chemical transfer between 2015 and 2025 result in long flight times of about nine years. Our SEP system is based on the German RIT ion engine. For our optimized mission design, we have extensively explored the SEP parameter space (specific impulse, thrust level, power level) and have calculated an optimal interplanetary trajectory for each setting. In contrast to the original TANDEM mission concept, which intends to use two launch vehicles and an all-chemical transfer, our SEP mission design requires only a single Ariane 5 ECA launch for the same payload mass. Without gravity assist, it yields a faster and more flexible transfer with a fight time of less than seven years, and an increased payload ratio. Our mission design proves thereby the capability of SEP even for missions into the outer solar system. Y1 - 2009 SN - 978-1-61567-908-9 N1 - 12-16 October 2009, Daejeon, Republic of Korea. PB - Curran Associates, Inc. CY - Red Hook, NY ER -