TY - CHAP A1 - Rajan, S. A1 - Butenweg, Christoph A1 - Dalguer, L. A. A1 - An, J. H. A1 - Renault, P. A1 - Klinkel, S. T1 - Fragility curves for a three-storey reinforced concrete test structure of the international benchmark SMART 2013 T2 - 16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 Y1 - 2017 N1 - Paper No 2119 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Kubalski, Thomas A1 - Fehling, Ekkehard A1 - Pfetzing, Thomas A1 - Meyer, Udo ED - Zabel, Volkmar ED - Beinersdorf, Silke T1 - Innovative Ansätze für die seismische Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk T2 - Vortragsband der 15. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik KW - Stahlbetonrahmen KW - Ausfachungsmauerwerk KW - INSYSME KW - Erdbeben KW - Ziegelmauerwerk Y1 - 2017 SN - 978-3-930108-13-5 SP - 130 EP - 145 PB - Deutsche Gesellschaft für Erdbebeningenieurwesen und Baudynamik (DGEB) e.V. CY - Weimar ER - TY - CHAP A1 - Rajan, Sreelakshmy A1 - Kubalski, Thomas A1 - Altay, Okyay A1 - Dalguer, Luis A A1 - Butenweg, Christoph T1 - Multi-dimensional fragility analysis of a RC building with components using response surface method T2 - 24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017 N2 - Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples. Y1 - 2017 SN - 9781510856776 SP - 3126 EP - 3135 PB - International Assn for Structural Mechanics in Reactor Technology (IASMiRT) CY - Raleigh, USA ER - TY - CHAP A1 - Boesen, Niklas A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Deichsel, Anne A1 - Klinkel, Sven ED - Zabel, Volkmar ED - Beinersdorf, Silke T1 - Untersuchung vorhandenerTragreserven moderner unbewehrter Mauerwerksbauten T2 - Vortragsband der 15. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik Y1 - 2017 SN - 978-3-930108-13-5 N1 - 21.-22. September 2017, Weimar. ISBN laut DNB falsch SP - 408 EP - 418 PB - Deutsche Gesellschaft für Erdbebeningenieurwesen und Baudynamik (DGEB) e.V. CY - Weimar ER - TY - JOUR A1 - Giresini, Linda A1 - Sassu, Mauro A1 - Butenweg, Christoph A1 - Alecci, Valerio A1 - De Stefano, Mario T1 - Vault macro-element with equivalent trusses in global seismic analyses JF - Earthquakes and Structures N2 - This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports. KW - vault KW - macro-element KW - equivalent stiffness KW - truss KW - churches Y1 - 2017 U6 - http://dx.doi.org/10.12989/eas.2017.12.4.409 SN - 2092-7614 (Print) SN - 2092-7622 (Online) VL - 12 IS - 4 SP - 409 EP - 423 PB - Techno-Press CY - Taejŏn ER - TY - JOUR A1 - Edip, K. A1 - Sesov, V. A1 - Butenweg, Christoph A1 - Bojadjieva, J. T1 - Development of coupled numerical model for simulation of multiphase soil JF - Computers and Geotechnics N2 - In this paper, a coupled multiphase model considering both non-linearities of water retention curves and solid state modeling is proposed. The solid displacements and the pressures of both water and air phases are unknowns of the proposed model. The finite element method is used to solve the governing differential equations. The proposed method is demonstrated through simulation of seepage test and partially consolidation problem. Then, implementation of the model is done by using hypoplasticity for the solid phase and analyzing the fully saturated triaxial experiments. In integration of the constitutive law error controlling is improved and comparisons done accordingly. In this work, the advantages and limitations of the numerical model are discussed. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.compgeo.2017.08.016 SN - 0266-352X VL - 96 SP - 118 EP - 131 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Michel, Philipp A1 - Butenweg, Christoph A1 - Kinkel, Sven T1 - Pile-grid foundations of onshore wind turbines considering soil-structure-interaction under seismic loading JF - Soil Dynamics and Earthquake Engineering N2 - In recent years, many onshore wind turbines are erected in seismic active regions and on soils with poor load bearing capacity, where pile grids are inevitable to transfer the loads into the ground. In this contribution, a realistic multi pile grid is designed to analyze the dynamics of a wind turbine tower including frequency dependent soil-structure-interaction. It turns out that different foundations on varying soil configurations heavily influence the vibration response. While the vibration amplitude is mostly attenuated, certain unfavorable combinations of structure and soil parameters lead to amplification in the range of the system's natural frequencies. This testifies the need for overall dynamic analysis in the assessment of the dynamic stability and the holistic frequency tuning of the turbines. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.soildyn.2018.03.009 SN - 0267-7261 VL - 109 SP - 299 EP - 311 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Boesen, Niklas A1 - Gellert, Christoph T1 - Evaluation of the Seismic Behavior of a Modern URM Building During the 2012 Northern Italy Earthquakes T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 SP - 1 EP - 12 ER - TY - CHAP A1 - Anic, Filip A1 - Penava, Davorin A1 - Guljas, Ivica A1 - Sarhosis, Vasilis A1 - Abrahamczyk, Lars A1 - Butenweg, Christoph T1 - The Effect of Openings on Out-of-Plane Capacity of Masonry Infilled Reinforced Concrete Frames T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 10168 SP - 1 EP - 11 ER - TY - CHAP A1 - Milkova, Kristina A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Development of Seismic Vulnerability Curves for Region Specific Masonry Buildings T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 10522 SP - 1 EP - 10 ER -