TY - JOUR A1 - Seifarth, Volker A1 - Grosse, Joachim O. A1 - Grossmann, Matthias A1 - Janke, Heinz Peter A1 - Arndt, Patrick A1 - Koch, Sabine A1 - Epple, Matthias A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation JF - Journal of Biomaterials Applications Y1 - 2017 U6 - https://doi.org/10.1177/0885328217723178 SN - 1530-8022 VL - 32 IS - 3 SP - 321 EP - 330 PB - Sage CY - London ER - TY - JOUR A1 - Breuer, Lars A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, Ronald A1 - Wagner, Torsten T1 - Investigation of the spatial resolution of a laser-based stimulation process for light-addressable hydrogels with incorporated graphene oxide by means of IR thermography JF - Sensors and Actuators A: Physical Y1 - 2017 U6 - https://doi.org/10.1016/j.sna.2017.11.031 SN - 0924-4247 VL - 268 SP - 126 EP - 132 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Demmer, Julius K. A1 - Chowdhury, Nilanjan Pal A1 - Selmer, Thorsten A1 - Ermler, Ulrich A1 - Buckel, Wolfgang T1 - The semiquinone swing in the bifurcating electron transferring flavoprotein/butyryl-CoA dehydrogenase complex from Clostridium difficile JF - Nature Communications Y1 - 2017 U6 - https://doi.org/10.1038/s41467-017-01746-3 SN - 2041-1723 N1 - Article number 1577 VL - 8 IS - 1 SP - 1 EP - 10 ER - TY - JOUR A1 - Werkhausen, Amelie A1 - Albracht, Kirsten A1 - Cronin, Neil J. A1 - Meier, Rahel A1 - Mojsen-Moeller, Jens A1 - Seynnes, Olivier R. T1 - Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task JF - Journal of Experimental Biology Y1 - 2017 U6 - https://doi.org/10.1242/jeb.164111 SN - 0022-0949 VL - 220 IS - 22 SP - 4141 EP - 4149 ER - TY - JOUR A1 - Meyer, Jan A1 - Hentschke, Reinhard A1 - Hager, Jonathan A1 - Hojdis, Nils A1 - Karimi-Varzaneh, Hossein Ali T1 - Molecular Simulation of Viscous Dissipation due to Cyclic Deformation of a Silica–Silica Contact in Filled Rubber JF - Macromolecules Y1 - 2017 U6 - https://doi.org/10.1021/acs.macromol.7b00947 SN - 1520-5835 VL - 50 IS - 17 SP - 6679 EP - 6689 ER - TY - JOUR A1 - Mayer, Jan A1 - Hentschke, Reinhard A1 - Hager, Jonathan A1 - Hojdis, Nils A1 - Karimi-Varnaneh, Hossein Ali T1 - A Nano-Mechanical Instability as Primary Contribution to Rolling Resistance JF - Scientific Reports Y1 - 2017 SN - 2045-2322 VL - 7 IS - Article number 11275 PB - Springer CY - Berlin ER - TY - CHAP A1 - Artmann, Gerhard A1 - Meruvu, Haritha A1 - Kizildag, Sefa A1 - Temiz Artmann, Aysegül ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Functional Toxicology and Pharmacology Test of Cell Induced Mechanical Tensile Stress in 2D and 3D Tissue Cultures T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Mechanical forces/tensile stresses are critical determinants of cellular growth, differentiation and migration patterns in health and disease. The innovative “CellDrum technology” was designed for measuring mechanical tensile stress of cultured cell monolayers/thin tissue constructs routinely. These are cultivated on very thin silicone membranes in the so-called CellDrum. The cell layers adhere firmly to the membrane and thus transmit the cell forces generated. A CellDrum consists of a cylinder which is sealed from below with a 4 μm thick, biocompatible, functionalized silicone membrane. The weight of cell culture medium bulbs the membrane out downwards. Membrane indentation is measured. When cells contract due to drug action, membrane, cells and medium are lifted upwards. The induced indentation changes allow for lateral drug induced mechanical tension quantification of the micro-tissues. With hiPS-induced (human) Cardiomyocytes (CM) the CellDrum opens new perspectives of individualized cardiac drug testing. Here, monolayers of self-beating hiPS-CMs were grown in CellDrums. Rhythmic contractions of the hiPS-cells induce membrane up-and-down deflections. The recorded cycles allow for single beat amplitude, single beat duration, integration of the single beat amplitude over the beat time and frequency analysis. Dose effects of agonists and antagonists acting on Ca2+ channels were sensitively and highly reproducibly observed. Data were consistent with published reference data as far as they were available. The combination of the CellDrum technology with hiPS-Cardiomyocytes offers a fast, facile and precise system for pharmacological and toxicological studies. It allows new preclinical basic as well as applied research in pharmacolgy and toxicology. Y1 - 2018 SN - 978-981-10-7904-7 U6 - https://doi.org/10.1007/978-981-10-7904-7_7 SP - 157 EP - 192 PB - Springer CY - Singapore ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Seifarth, Volker A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries. KW - Mechanical simulation KW - Growth modelling KW - Ureter KW - Bladder KW - Reconstruction Y1 - 2018 SN - 978-981-10-7904-7 U6 - https://doi.org/10.1007/978-981-10-7904-7_9 SP - 209 EP - 232 PB - Springer CY - Singapore ER - TY - CHAP A1 - Wagemann, Kurt A1 - Tippkötter, Nils T1 - Biorefineries: a short introduction T2 - Biorefineries N2 - The terms bioeconomy and biorefineries are used for a variety of processes and developments. This short introduction is intended to provide a delimitation and clarification of the terminology as well as a classification of current biorefinery concepts. The basic process diagrams of the most important biorefinery types are shown. KW - Bioeconomy KW - Biorefinery definitions KW - Introduction KW - Process schemes KW - Renewable resources Y1 - 2018 SN - 978-3-319-97117-9 SN - 978-3-319-97119-3 U6 - https://doi.org/10.1007/10_2017_4 N1 - (Advances in Biochemical Engineering/Biotechnology book series ; Vol. 166) SP - 1 EP - 11 PB - Springer CY - Cham ER - TY - JOUR A1 - Teumer, T. A1 - Capitain, C. A1 - Ross-Jones, J. A1 - Tippkötter, Nils A1 - Rädle, M. A1 - Methner, F.-J. T1 - In-line Haze Monitoring Using a Spectrally Resolved Back Scattering Sensor JF - BrewingScience N2 - In the present work an optical sensor in combination with a spectrally resolved detection device for in-line particle-size-monitoring for quality control in beer production is presented. The principle relies on the size and wavelength dependent backscatter of growing particles in fluids. Measured interference structures of backscattered light are compared with calculated theoretical values, based on Mie-Theory, and fitted with a linear least square method to obtain particle size distributions. For this purpose, a broadband light source in combination with a process-CCD-spectrometer (charge ? coupled device spectrometer) and process adapted fiber optics are used. The goal is the development of an easy and flexible measurement device for in-line-monitoring of particle size. The presented device can be directly installed in product fill tubes or vessels, follows CIP- (cleaning in place) and removes the need of sample taking. A proof of concept and preliminary results, measuring protein precipitation, are presented. Y1 - 2018 SN - 1613-2041 VL - 71 IS - 5/6 SP - 49 EP - 55 PB - Fachverlag Hans Carl CY - Nürnberg ER -