TY - CHAP A1 - Kleefeld, Andreas ED - Constanda, Christian T1 - Numerical calculation of interior transmission eigenvalues with mixed boundary conditions T2 - Computational and Analytic Methods in Science and Engineering N2 - Interior transmission eigenvalue problems for the Helmholtz equation play an important role in inverse wave scattering. Some distribution properties of those eigenvalues in the complex plane are reviewed. Further, a new scattering model for the interior transmission eigenvalue problem with mixed boundary conditions is described and an efficient algorithm for computing the interior transmission eigenvalues is proposed. Finally, extensive numerical results for a variety of two-dimensional scatterers are presented to show the validity of the proposed scheme. Y1 - 2020 SN - 978-3-030-48185-8 (Hardcover) U6 - https://doi.org/10.1007/978-3-030-48186-5_9 SP - 173 EP - 195 PB - Birkhäuser CY - Cham ER - TY - JOUR A1 - Martín-Vaquero, J. A1 - Kleefeld, Andreas T1 - Solving nonlinear parabolic PDEs in several dimensions: Parallelized ESERK codes JF - Journal of Computational Physics N2 - There is a very large number of very important situations which can be modeled with nonlinear parabolic partial differential equations (PDEs) in several dimensions. In general, these PDEs can be solved by discretizing in the spatial variables and transforming them into huge systems of ordinary differential equations (ODEs), which are very stiff. Therefore, standard explicit methods require a large number of iterations to solve stiff problems. But implicit schemes are computationally very expensive when solving huge systems of nonlinear ODEs. Several families of Extrapolated Stabilized Explicit Runge-Kutta schemes (ESERK) with different order of accuracy (3 to 6) are derived and analyzed in this work. They are explicit methods, with stability regions extended, along the negative real semi-axis, quadratically with respect to the number of stages s, hence they can be considered to solve stiff problems much faster than traditional explicit schemes. Additionally, they allow the adaptation of the step length easily with a very small cost. Two new families of ESERK schemes (ESERK3 and ESERK6) are derived, and analyzed, in this work. Each family has more than 50 new schemes, with up to 84.000 stages in the case of ESERK6. For the first time, we also parallelized all these new variable step length and variable number of stages algorithms (ESERK3, ESERK4, ESERK5, and ESERK6). These parallelized strategies allow to decrease times significantly, as it is discussed and also shown numerically in two problems. Thus, the new codes provide very good results compared to other well-known ODE solvers. Finally, a new strategy is proposed to increase the efficiency of these schemes, and it is discussed the idea of combining ESERK families in one code, because typically, stiff problems have different zones and according to them and the requested tolerance the optimum order of convergence is different. KW - Multi-dimensional partial differential equations KW - Higher-order codes KW - Nonlinear PDEs Y1 - 2020 U6 - https://doi.org/10.1016/j.jcp.2020.109771 SN - 0021-9991 IS - 423 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Burgeth, Bernhard A1 - Kleefeld, Andreas A1 - Naegel, Benoît A1 - Perret, Benjamin T1 - Editorial — Special Issue: ISMM 2019 T2 - Mathematical Morphology - Theory and Applications N2 - This editorial presents the Special Issue dedicated to the conference ISMM 2019 and summarizes the articles published in this Special Issue. Y1 - 2020 U6 - https://doi.org/10.1515/mathm-2020-0200 SN - 2353-3390 VL - 4 IS - 1 SP - 159 EP - 161 PB - De Gruyter CY - Warschau ER - TY - JOUR A1 - Wild, Dominik A1 - Schrezenmeier, Johannes A1 - Czupalla, Markus A1 - Förstner, Roger T1 - Thermal Characterization of additive manufactured Integral Structures for Phase Change Applications JF - 2020 International Conference on Environmental Systems N2 - “Infused Thermal Solutions” (ITS) introduces a method for passive thermal control to stabilize structural components thermally without active heating and cooling systems, by using phase change material (PCM) in combination with lattice – both embedded into an additive manufactured integral structure. The technology is currently under development. This paper presents the results of the thermal property measurements performed on additive manufactured ITS breadboards. Within the breadboard campaigns key characteristics of the additive manufactured specimens were derived: Mechanical parameters: specimen impermeability, minimum wall thickness, lattice structure, subsequent heat treatment. Thermal properties: thermo-optical surface properties of the additive manufactured raw material, thermal conductivity and specific heat capacity measurements. As a conclusion the paper introduces an overview of potential ITS hardware applications, expected to increase the thermal performance. Y1 - 2020 PB - Texas Tech University ER - TY - CHAP A1 - Laack, Walter van T1 - Twee Kanten van één Medaille T2 - Het Geheim van Elysion : 45 Jaar Studies naar Nabij-de-Dood-Ervaringen over Bewustzijn in Liefde zonder Waarheen Y1 - 2020 SN - 978-94-93175-44-0 SP - 97 EP - 105 PB - Van Warven CY - Kampen ER - TY - JOUR A1 - Drumm, Christian A1 - Emhardt, Selina N. A1 - Kok, Ellen M. A1 - Jarodzka, Halzka A1 - Brand-Gruwel, Saskia A1 - van Gog, Tamara T1 - How Experts Adapt Their Gaze Behavior When Modeling a Task to Novices JF - Cognitive science N2 - Domain experts regularly teach novice students how to perform a task. This often requires them to adjust their behavior to the less knowledgeable audience and, hence, to behave in a more didactic manner. Eye movement modeling examples (EMMEs) are a contemporary educational tool for displaying experts’ (natural or didactic) problem-solving behavior as well as their eye movements to learners. While research on expert-novice communication mainly focused on experts’ changes in explicit, verbal communication behavior, it is as yet unclear whether and how exactly experts adjust their nonverbal behavior. This study first investigated whether and how experts change their eye movements and mouse clicks (that are displayed in EMMEs) when they perform a task naturally versus teach a task didactically. Programming experts and novices initially debugged short computer codes in a natural manner. We first characterized experts’ natural problem-solving behavior by contrasting it with that of novices. Then, we explored the changes in experts’ behavior when being subsequently instructed to model their task solution didactically. Experts became more similar to novices on measures associated with experts’ automatized processes (i.e., shorter fixation durations, fewer transitions between code and output per click on the run button when behaving didactically). This adaptation might make it easier for novices to follow or imitate the expert behavior. In contrast, experts became less similar to novices for measures associated with more strategic behavior (i.e., code reading linearity, clicks on run button) when behaving didactically. Y1 - 2020 U6 - https://doi.org/10.1111/cogs.12893 SN - 1551-6709 VL - 44 IS - 9 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Finkenberger, Isabel Maria A1 - Veil, Katja T1 - Räumliche Transformation JF - RaumPlanung : Fachzeitschrift für räumliche Planung und Forschung Y1 - 2020 SN - 0176-7534 VL - 205 IS - 1 SP - 6 EP - 11 PB - IfR (Informationskreis für Raumplanung) CY - Dortmund ER - TY - JOUR A1 - Bayer, Robin A1 - Temiz Artmann, Aysegül A1 - Digel, Ilya A1 - Falkenstein, Julia A1 - Artmann, Gerhard A1 - Creutz, Till A1 - Hescheler, Jürgen T1 - Mechano-pharmacological testing of L-Type Ca²⁺ channel modulators via human vascular celldrum model JF - Cellular Physiology and Biochemistry N2 - Background/Aims: This study aimed to establish a precise and well-defined working model, assessing pharmaceutical effects on vascular smooth muscle cell monolayer in-vitro. It describes various analysis techniques to determine the most suitable to measure the biomechanical impact of vasoactive agents by using CellDrum technology. Methods: The so-called CellDrum technology was applied to analyse the biomechanical properties of confluent human aorta muscle cells (haSMC) in monolayer. The cell generated tensions deviations in the range of a few N/m² are evaluated by the CellDrum technology. This study focuses on the dilative and contractive effects of L-type Ca²⁺ channel agonists and antagonists, respectively. We analyzed the effects of Bay K8644, nifedipine and verapamil. Three different measurement modes were developed and applied to determine the most appropriate analysis technique for the study purpose. These three operation modes are called, particular time mode" (PTM), "long term mode" (LTM) and "real-time mode" (RTM). Results: It was possible to quantify the biomechanical response of haSMCs to the addition of vasoactive agents using CellDrum technology. Due to the supplementation of 100nM Bay K8644, the tension increased approximately 10.6% from initial tension maximum, whereas, the treatment with nifedipine and verapamil caused a significant decrease in cellular tension: 10nM nifedipine decreased the biomechanical stress around 6,5% and 50nM verapamil by 2,8%, compared to the initial tension maximum. Additionally, all tested measurement modes provide similar results while focusing on different analysis parameters. Conclusion: The CellDrum technology allows highly sensitive biomechanical stress measurements of cultured haSMC monolayers. The mechanical stress responses evoked by the application of vasoactive calcium channel modulators were quantified functionally (N/m²). All tested operation modes resulted in equal findings, whereas each mode features operation-related data analysis. Y1 - 2020 U6 - https://doi.org/10.33594/000000225 SN - 1421-9778 VL - 54 SP - 371 EP - 383 PB - Cell Physiol Biochem Press CY - Düsseldorf ER - TY - JOUR A1 - Raffeis, Iris A1 - Adjei-Kyeremeh, Frank A1 - Vroomen, Uwe A1 - Westhoff, Elmar A1 - Bremen, Sebastian A1 - Hohoi, Alexandru A1 - Bührig-Polaczek, Andreas T1 - Qualification of a Ni-Cu alloy for the laser powder bed fusion process (LPBF): Its microstructure and mechanical properties JF - Applied Sciences N2 - As researchers continue to seek the expansion of the material base for additive manufacturing, there is a need to focus attention on the Ni–Cu group of alloys which conventionally has wide industrial applications. In this work, the G-NiCu30Nb casting alloy, a variant of the Monel family of alloys with Nb and high Si content is, for the first time, processed via the laser powder bed fusion process (LPBF). Being novel to the LPBF processes, optimum LPBF parameters were determined, and hardness and tensile tests were performed in as-built conditions and after heat treatment at 1000 °C. Microstructures of the as-cast and the as-built condition were compared. Highly dense samples (99.8% density) were achieved after varying hatch distance (80 µm and 140 µm) with scanning speed (550 mm/s–1500 mm/s). There was no significant difference in microhardness between varied hatch distance print sets. Microhardness of the as-built condition (247 HV0.2) exceeded the as-cast microhardness (179 HV0.2.). Tensile specimens built in vertical (V) and horizontal (H) orientations revealed degrees of anisotropy and were superior to conventionally reported figures. Post heat treatment increased ductility from 20% to 31% (V), as well as from 16% to 25% (H), while ultimate tensile strength (UTS) and yield strength (YS) were considerably reduced. Y1 - 2020 U6 - https://doi.org/10.3390/app10103401 SN - 2076-3417 N1 - Special Issue Materials Development by Additive Manufacturing Techniques VL - 10 IS - Art. 3401 SP - 1 EP - 15 PB - MDPI CY - Basel ER - TY - CHAP A1 - Kasch, Susanne A1 - Schmidt, Thomas A1 - Eichler, Fabian A1 - Thurn, Laura A1 - Jahn, Simon A1 - Bremen, Sebastian T1 - Solution approaches and process concepts for powder bed-based melting of glass T2 - Industrializing Additive Manufacturing. Proceedings of AMPA2020 N2 - In the study, the process chain of additive manufacturing by means of powder bed fusion will be presented based on the material glass. In order to reliably process components additively, new concepts with different solutions were developed and investigated. Compared to established metallic materials, the properties of glass materials differ significantly. Therefore, the process control was adapted to the material glass in the investigations. With extensive parameter studies based on various glass powders such as borosilicate glass and quartz glass, scientifically proven results on powder bed fusion of glass are presented. Based on the determination of the particle properties with different methods, extensive investigations are made regarding the melting behavior of glass by means of laser beams. Furthermore, the experimental setup was steadily expanded. In addition to the integration of coaxial temperature measurement and regulation, preheating of the building platform is of major importance. This offers the possibility to perform 3D printing at the transformation temperatures of the glass materials. To improve the component’s properties, the influence of a subsequent heat treatment was also investigated. The experience gained was incorporated into a new experimental system, which allows a much better exploration of the 3D printing of glass. Currently, studies are being conducted to improve surface texture, building accuracy, and geometrical capabilities using three-dimensional specimen. The contribution shows the development of research in the field of 3D printing of glass, gives an insight into the machine and process engineering as well as an outlook on the possibilities and applications. KW - Glass powder KW - Laser processing KW - Additive manufacturing KW - Melting KW - L-PBF Y1 - 2020 SN - 978-3-030-54333-4 (Print) SN - 978-3-030-54334-1 (Online) U6 - https://doi.org/10.1007/978-3-030-54334-1_7 N1 - International Conference on Additive Manufacturing in Products and Applications. 01.-03. September 2020. Zurich, Switzerland SP - 82 EP - 95 PB - Springer CY - Cham ER -