TY - JOUR A1 - Haeger, Gerrit A1 - Probst, Johanna A1 - Jaeger, Karl-Erich A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - Novel aminoacylases from Streptomyces griseus DSM 40236 and their recombinant production in Streptomyces lividans JF - FEBS Open Bio N2 - Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl-amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236ᵀ . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC 3.5.1.14), designated SgAA, and an ε-lysine acylase (EC 3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl-amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl-amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-L-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl-amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine. KW - Streptomyces lividans KW - recombinant expression KW - Streptomyces griseus KW - ε-lysine acylase KW - α-aminoacylase Y1 - 2023 U6 - http://dx.doi.org/10.1002/2211-5463.13723 SN - 2211-5463 N1 - Corresponding author: Petra Siegert VL - 13 IS - 12 SP - 2224 EP - 2238 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Haeger, Gerrit A1 - Grankin, Alina A1 - Wagner, Michaela T1 - Construction of an Aspergillus oryzae triple amylase deletion mutant as a chassis to evaluate industrially relevant amylases using multiplex CRISPR/Cas9 editing technology JF - Applied Research N2 - Aspergillus oryzae is an industrially relevant organism for the secretory production of heterologous enzymes, especially amylases. The activities of potential heterologous amylases, however, cannot be quantified directly from the supernatant due to the high background activity of native α-amylase. This activity is caused by the gene products of amyA, amyB, and amyC. In this study, an in vitro CRISPR/Cas9 system was established in A. oryzae to delete these genes simultaneously. First, pyrG of A. oryzae NSAR1 was mutated by exploiting NHEJ to generate a counter-selection marker. Next, all amylase genes were deleted simultaneously by co-transforming a repair template carrying pyrG of Aspergillus nidulans and flanking sequences of amylase gene loci. The rate of obtained triple knock-outs was 47%. We showed that triple knockouts do not retain any amylase activity in the supernatant. The established in vitro CRISPR/Cas9 system was used to achieve sequence-specific knock-in of target genes. The system was intended to incorporate a single copy of the gene of interest into the desired host for the development of screening methods. Therefore, an integration cassette for the heterologous Fpi amylase was designed to specifically target the amyB locus. The site-specific integration rate of the plasmid was 78%, with exceptional additional integrations. Integration frequency was assessed via qPCR and directly correlated with heterologous amylase activity. Hence, we could compare the efficiency between two different signal peptides. In summary, we present a strategy to exploit CRISPR/Cas9 for gene mutation, multiplex knock-out, and the targeted knock-in of an expression cassette in A. oryzae. Our system provides straightforward strain engineering and paves the way for development of fungal screening systems. KW - aspergillus KW - CRISPR/Cas9 KW - filamentous fungi KW - genome engineering Y1 - 2023 U6 - http://dx.doi.org/10.1002/appl.202200106 SN - 2702-4288 IS - Early View SP - 1 EP - 15 PB - Wiley-VCH ER - TY - RPRT A1 - Haeger, Gerrit A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - Abschlussbericht Teil II: Eingehende Darstellung Neue biobasierte Lipopeptide aus nachhaltiger Produktion (LipoPep) Y1 - 2023 N1 - Förderkennzeichen: 13FH256PA6 Titel: FHprofUnt 2016: Neue biobasierte Lipopeptide aus nachhaltiger Produktion Laufzeit: 01.02.2019 – 31.10.2022 ER -