TY - JOUR A1 - Doll, Theodor A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Engineering of functional interfaces / Theodor Doll ; Torsten Wagner ; Patrick Wagner ; Michael J. Schöning (eds.) JF - Physica status solidi (a) Y1 - 2016 U6 - http://dx.doi.org/10.1002/pssa.201670641 SN - 1862-6319 VL - 213 IS - 6 SP - 1393 EP - 1394 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Molinnus, Denise A1 - Sorich, Maren A1 - Bartz, Alexander A1 - Siegert, Petra A1 - Willenberg, Holger S. A1 - Lisdat, Fred A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate JF - Sensors and Actuators B: Chemical N2 - An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer’s solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.snb.2016.06.064 SN - 0925-4005 VL - 237 SP - 190 EP - 195 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-Ichiro A1 - Sato, Takuya A1 - Abe, Minami A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Light-addressable potentiometric sensor as a sensing element in plug-based microfluidic devices JF - Micromachines N2 - A plug-based microfluidic system based on the principle of the light-addressable potentiometric sensor (LAPS) is proposed. The LAPS is a semiconductor-based chemical sensor, which has a free addressability of the measurement point on the sensing surface. By combining a microfluidic device and LAPS, ion sensing can be performed anywhere inside the microfluidic channel. In this study, the sample solution to be measured was introduced into the channel in a form of a plug with a volume in the range of microliters. Taking advantage of the light-addressability, the position of the plug could be monitored and pneumatically controlled. With the developed system, the pH value of a plug with a volume down to 400 nL could be measured. As an example of plug-based operation, two plugs were merged in the channel, and the pH change was detected by differential measurement. KW - light-addressable potentiometric sensor KW - plug-based microfluidic device KW - chemical sensor Y1 - 2016 U6 - http://dx.doi.org/10.3390/mi7070111 SN - 2072-666X N1 - This article belongs to the Special Issue "Micro/Nano Devices for Chemical Analysis" VL - 7 IS - 7 SP - 111 PB - MDPI CY - Basel ER - TY - CHAP A1 - Bäcker, Matthias A1 - Koch, C. A1 - Geiger, F. A1 - Eber, F. A1 - Gliemann, H. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - A New Class of Biosensors Based on Tobacco Mosaic Virus and Coat Proteins as Enzyme Nanocarrier T2 - Procedia Engineering Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.proeng.2016.11.228 SN - 1877-7058 N1 - Proceedings of the 30th anniversary Eurosensors Conference – Eurosensors 2016, 4-7. Sepember 2016, Budapest, Hungary VL - Vol. 168 SP - 618 EP - 621 ER - TY - CHAP A1 - Poghossian, Arshak A1 - Bronder, Thomas A1 - Scheja, S. A1 - Wu, Chunsheng A1 - Metzger-Boddien, C. A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Label-free Electrostatic Detection of DNA Amplification by PCR Using Capacitive Field-effect Devices T2 - Procedia Engineering N2 - A capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor modified with a positively charged weak polyelectrolyte of poly(allylamine hydrochloride) (PAH)/single-stranded probe DNA (ssDNA) bilayer has been used for a label-free electrostatic detection of pathogen-specific DNA amplification via polymerase chain reaction (PCR). The sensor is able to distinguish between positive and negative PCR solutions, to detect the existence of target DNA amplicons in PCR samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.proeng.2016.11.512 SN - 1877-7058 N1 - Proceedings of the 30th anniversary Eurosensors Conference – Eurosensors 2016, 4-7. Sepember 2016, Budapest, Hungary VL - Vol. 168 SP - 514 EP - 517 PB - Elsevier CY - Amsterdam ER -