TY - CHAP A1 - Rajan, S. A1 - Butenweg, Christoph A1 - Dalguer, L. A. A1 - An, J. H. A1 - Renault, P. A1 - Klinkel, S. T1 - Fragility curves for a three-storey reinforced concrete test structure of the international benchmark SMART 2013 T2 - 16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 Y1 - 2017 N1 - Paper No 2119 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Sharma, Mamta Rameshwarlal A1 - Bleck, Wolfgang A1 - Leicht-Scholten, Carmen ED - Farn, C. K. T1 - Innovation through Diversity - Development of a Diversity and Innovation management concept T2 - International Conference on Innovation and Management : IAM23017S : Date: July 4-7, 2017, Osaka, Japan N2 - Acknowledging that a diverse workforce could be a potential source of innovation, the current research deals with the fine details of why diversity management is central to achieving innovation in heterogeneous research groups and how this could be effectively realized in an organization. The types of heterogeneities addressed mainly include gender, qualification, academic discipline and intercultural perspectives. The type of organization being dealt with in this work is a complex association of research institutes at a technical university in Germany (RWTH Aachen University), namely a 'Cluster of Excellence', whereby several institutes of the university work collaboratively in different sub-projects. The 'Cluster of Excellence' is a part of the 'Excellence Initiative' of the German federal and state governments German Research Foundation (DFG) and German Council of Science and Humanities, with the ultimate aim of promoting cutting-edge research. To support interdisciplinary collaboration and thus the performance of the cluster, the development of a diversity and innovation management concept is presently in the conceptual phase and will be described in the frame of this paper. The 3-S-Diversity Model, composed of the three elements: skills, structure and strategy, serves as a basis for the development of the concept. The proposed concept consists of six phases; the first two phases lay the ground work by developing an understanding of the status quo on the forms of diversity in the Cluster of Excellence, the type of organizational structure of the member institutes and the varieties of specialist work cultures of the same. The third and the fourth phases build up on this foundation by means of qualitative and quantitative studies. While the third phase deals with the sensitization of the management level to the close connection between diversity and innovation; the need to manage them thereafter and find tailor-made methods of doing so, the fourth phase shall mainly focus on the mindset of the employees in this regard. The fifth phase shall consolidate the learnings and the ideas developed in the course of the first four phases into an implementable strategy. The ultimate phase shall be the implementation of this concept in the Cluster. The first three phases have been accomplished successfully and the preliminary results are already available. Y1 - 2017 SN - 2218-6387 SP - Panel C PB - Kuang Hui Chiu CY - Osaka ER - TY - CHAP A1 - Rajan, Sreelakshmy A1 - Kubalski, Thomas A1 - Altay, Okyay A1 - Dalguer, Luis A A1 - Butenweg, Christoph T1 - Multi-dimensional fragility analysis of a RC building with components using response surface method T2 - 24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017 N2 - Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples. Y1 - 2017 SN - 9781510856776 SP - 3126 EP - 3135 PB - International Assn for Structural Mechanics in Reactor Technology (IASMiRT) CY - Raleigh, USA ER - TY - JOUR A1 - Giresini, Linda A1 - Sassu, Mauro A1 - Butenweg, Christoph A1 - Alecci, Valerio A1 - De Stefano, Mario T1 - Vault macro-element with equivalent trusses in global seismic analyses JF - Earthquakes and Structures N2 - This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports. KW - vault KW - macro-element KW - equivalent stiffness KW - truss KW - churches Y1 - 2017 U6 - http://dx.doi.org/10.12989/eas.2017.12.4.409 SN - 2092-7614 (Print) SN - 2092-7622 (Online) VL - 12 IS - 4 SP - 409 EP - 423 PB - Techno-Press CY - Taejŏn ER -