TY - JOUR A1 - Wu, Chunsheng A1 - Poghossian, Arshak A1 - Bronder, Thomas A1 - Schöning, Michael Josef T1 - Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor JF - Sensors and Actuators B: Chemical N2 - A multi-spot light-addressable potentiometric sensor (LAPS), which belongs to the family of semiconductor field-effect devices, was applied for label-free detection of double-stranded deoxyribonucleic acid (dsDNA) molecules by their intrinsic molecular charge. To reduce the distance between the DNA charge and sensor surface and thus, to enhance the electrostatic coupling between the dsDNA molecules and the LAPS, the negatively charged dsDNA molecules were electrostatically adsorbed onto the gate surface of the LAPS covered with a positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)). The surface potential changes in each spot of the LAPS, induced by the layer-by-layer adsorption of a PAH/dsDNA bilayer, were recorded by means of photocurrent-voltage and constant-photocurrent measurements. In addition, the surface morphology of the gate surface before and after consecutive electrostatic adsorption of PAH and dsDNA layers was studied by atomic force microscopy measurements. Moreover, fluorescence microscopy was used to verify the successful adsorption of dsDNA molecules onto the PAH-modified LAPS surface. A high sensor signal of 25 mV was registered after adsorption of 10 nM dsDNA molecules. The lower detection limit is down to 0.1 nM dsDNA. The obtained results demonstrate that the PAH-modified LAPS device provides a convenient and rapid platform for the direct label-free electrical detection of in-solution hybridized dsDNA molecules. KW - Layer-by-layer adsorption KW - Poly(allylamine hydrochloride) KW - Label-free detection KW - DNA biosensor KW - LAPS KW - Field effect Y1 - 2016 U6 - https://doi.org/10.1016/j.snb.2016.02.004 SN - 0925-4005 IS - 229 SP - 506 EP - 512 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Laack, Walter van T1 - Schnittstelle Tod: Wo stehen wir nach 40 Jahren NTE-Forschung? Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:101:1-201603132912 SN - 978-3-936624-30-4 (Print-Ausgabe) SN - 978-3-936624-32-8 (Online-Ausgabe) N1 - Tagungsbeiträge des 4. Europäischen Seminars am 07. November 2015 in Aachen zum Thema Nahtoderfahrungen mit dem Serientitel: "Schnittstelle Tod" PB - van Laack GmbH CY - Aachen ER - TY - JOUR A1 - Mykoniou, Konstantin A1 - Butenweg, Christoph A1 - Holtschoppen, Britta A1 - Klinkel, Sven T1 - Seismic response analysis of adjacent liquid-storage tanks JF - Earthquake engineering and structural dynamics N2 - A refined substructure technique in the frequency domain is developed, which permits consideration of the interaction effects among adjacent containers through the supporting deformable soil medium. The tank-liquid systems are represented by means of mechanical models, whereas discrete springs and dashpots stand for the soil beneath the foundations. The proposed model is employed to assess the responses of adjacent circular, cylindrical tanks for harmonic and seismic excitations over wide range of tank proportions and soil conditions. The influence of the number, spatial arrangement of the containers and their distance on the overall system's behavior is addressed. The results indicate that the cross-interaction effects can substantially alter the impulsive components of response of each individual element in a tank farm. The degree of this impact is primarily controlled by the tank proportions and the proximity of the predominant natural frequencies of the shell-liquid-soil systems and the input seismic motion. The group effects should be not a priori disregarded, unless the tanks are founded on shallow soil deposit overlying very stiff material or bedrock. KW - liquid-structure interaction KW - seismic response KW - impulsive effects KW - liquid-storage tank KW - structure-soil-structure interaction Y1 - 2016 U6 - https://doi.org/10.1002/eqe.2726 SN - 1096-9845 (E-Journal); 0098-8847 (Print) VL - 45 IS - 11 SP - 1779 EP - 1796 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Fissabre, Anke A1 - Wilson, Ariane ED - Feiglstorfer, Hubert T1 - "Lehmbaupropaganda" : On the tradition of earth building literature T2 - Earth Construction and Tradition. Vol. I Y1 - 2016 SN - 978-3-900265-34-2 SP - 47 EP - 69 PB - IVA Institut für vergleichende Architekturforschung CY - Wien ER - TY - CHAP A1 - Niemueller, Tim A1 - Reuter, Sebastian A1 - Ewert, Daniel A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard ED - Almeida, Luis T1 - The Carologistics Approach to Cope with the Increased Complexity and New Challenges of the RoboCup Logistics League 2015 T2 - RoboCup 2015: Robot World Cup XIX Y1 - 2016 SN - 978-3-319-29339-4 U6 - https://doi.org/10.1007/978-3-319-29339-4_4 N1 - Lecture Notes in Computer Science ; 9513 SP - 47 EP - 59 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Niemueller, Tim A1 - Reuter, Sebastian A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard ED - Almeida, Luis T1 - Evaluation of the RoboCup Logistics League and Derived Criteria for Future Competitions T2 - RoboCup 2015: Robot World Cup XIX Y1 - 2016 SN - 978-3-319-29339-4 U6 - https://doi.org/10.1007/978-3-319-29339-4_3 N1 - Lecture Notes in Computer Science ; 9513 SP - 31 EP - 43 PB - Springer International Publishing CY - Cham ER - TY - JOUR A1 - Murib, M. S. A1 - Yeap, W. S. A1 - Eurlings, Y. A1 - Grinsven, B. van A1 - Boyen, H.-G. A1 - Conings, B. A1 - Michiels, L. A1 - Ameloot, M. A1 - Carleer, R. A1 - Warmer, J. A1 - Kaul, P. A1 - Haenen, K. A1 - Schöning, Michael Josef A1 - Ceuninck, W. de A1 - Wagner, P. T1 - Heat-transfer based characterization of DNA on synthetic sapphire chips JF - Sensors and Actuators B: Chemical N2 - In this study, we show that synthetic sapphire (Al₂O₃), an established implant material, can also serve as a platform material for biosensors comparable to nanocrystalline diamond. Sapphire chips, beads, and powder were first modified with (3-aminopropyl) triethoxysilane (APTES), followed by succinic anhydride (SA), and finally single-stranded probe DNA was EDC coupled to the functionalized layer. The presence of the APTES-SA layer on sapphire powders was confirmed by thermogravimetric analyis and Fourier-transform infrared spectroscopy. Using planar sapphire chips as substrates and X-ray photoelectron spectroscopy (XPS) as surface-sensitive tool, the sequence of individual layers was analyzed with respect to their chemical state, enabling the quantification of areal densities of the involved molecular units. Fluorescence microscopy was used to demonstrate the hybridization of fluorescently tagged target DNA to the probe DNA, including denaturation- and re-hybridization experiments. Due to its high thermal conductivity, synthetic sapphire is especially suitable as a chip material for the heat-transfer method, which was employed to distinguish complementary- and non-complementary DNA duplexes containing single-nucleotide polymorphisms. These results indicate that it is possible to detect mutations electronically with a chemically resilient and electrically insulating chip material. Y1 - 2016 U6 - https://doi.org/10.1016/j.snb.2016.02.027 SN - 0925-4005 VL - 230 IS - 230 SP - 260 EP - 271 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Niemueller, Tim A1 - Reuter, Sebastian A1 - Ferrein, Alexander ED - Almeida, Luis T1 - Fawkes for the RoboCup Logistics League T2 - RoboCup 2015: Robot World Cup XIX Y1 - 2016 SN - 978-3-319-29339-4 U6 - https://doi.org/10.1007/978-3-319-29339-4_31 N1 - Lecture Notes in Computer Science ; 9513 SP - 365 EP - 373 PB - Springer International Publishing CY - Cham ER - TY - JOUR A1 - Kowalski, Julia A1 - Linder, Peter A1 - Zierke, S. A1 - Wulfen, B. van A1 - Clemens, J. A1 - Konstantinidis, K. A1 - Ameres, G. A1 - Hoffmann, R. A1 - Mikucki, J. A1 - Tulaczyk, S. A1 - Funke, O. A1 - Blandfort, D. A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Hiecker, S. A1 - Plescher, Engelbert A1 - Schöngarth, Sarah A1 - Dachwald, Bernd A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Eliseev, D. A1 - Heinen, D. A1 - Scholz, F. A1 - Wiebusch, C. A1 - Macht, S. A1 - Bestmann, U. A1 - Reineking, T. A1 - Zetzsche, C. A1 - Schill, K. A1 - Förstner, R. A1 - Niedermeier, H. A1 - Szumski, A. A1 - Eissfeller, B. A1 - Naumann, U. A1 - Helbing, K. T1 - Navigation technology for exploration of glacier ice with maneuverable melting probes JF - Cold Regions Science and Technology N2 - The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept. Y1 - 2016 U6 - https://doi.org/10.1016/j.coldregions.2015.11.006 SN - 0165-232X IS - 123 SP - 53 EP - 70 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hamad, E. M. A1 - Bilatto, S. E. R. A1 - Adly, N. Y. A1 - Correa, D. S. A1 - Wolfrum, B. A1 - Schöning, Michael Josef A1 - Offenhäusser, A. A1 - Yakushenko, A. T1 - Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices JF - Lab on a Chip N2 - Bonding of polymer-based microfluidics to polymer substrates still poses a challenge for Lab-On-a-Chip applications. Especially, when sensing elements are incorporated, patterned deposition of adhesives with curing at ambient conditions is required. Here, we demonstrate a fabrication method for fully printed microfluidic systems with sensing elements using inkjet and stereolithographic 3D-printing. Y1 - 2016 U6 - https://doi.org/10.1039/C5LC01195G SN - 1473-0189 VL - 16 IS - 1 SP - 70 EP - 74 PB - Royal Society of Chemistry CY - Cambridge ER -