TY - JOUR A1 - Scheer, Nico A1 - Mclaughlin, Lesley A. A1 - Rode, Anja A1 - MacLeod, Alastair Kenneth A1 - Henderson, Colin J. A1 - Wolf, Roland C. T1 - Deletion of thirty murine cytochrome P450 genes results in viable mice with compromised drug metabolism JF - Drug Metabolism and Disposition N2 - In humans, 75% of all drugs are metabolized by the cytochrome P450-dependent monooxygenase system. Enzymes encoded by the CYP2C, CYP2D, and CYP3A gene clusters account for ∼80% of this activity. There are profound species differences in the multiplicity of cytochrome P450 enzymes, and the use of mouse models to predict pathways of drug metabolism is further complicated by overlapping substrate specificity between enzymes from different gene families. To establish the role of the hepatic and extrahepatic P450 system in drug and foreign chemical disposition, drug efficacy, and toxicity, we created a unique mouse model in which 30 cytochrome P450 genes from the Cyp2c, Cyp2d, and Cyp3a gene clusters have been deleted. Remarkably, despite a wide range of putative important endogenous functions, Cyp2c/2d/3a KO mice were viable and fertile, demonstrating that these genes have evolved primarily as detoxification enzymes. Although there was no overt phenotype, detailed examination showed Cyp2c/2d/3a KO mice had a smaller body size (15%) and larger livers (20%). Changes in hepatic morphology and a decreased blood glucose (30%) were also noted. A five-drug cocktail of cytochrome P450 isozyme probe substrates were used to evaluate changes in drug pharmacokinetics; marked changes were observed in either the pharmacokinetics or metabolites formed from Cyp2c, Cyp2d, and Cyp3a substrates, whereas the metabolism of the Cyp1a substrate caffeine was unchanged. Thus, Cyp2c/2d/3a KO mice provide a powerful model to study the in vivo role of the P450 system in drug metabolism and efficacy, as well as in chemical toxicity. Y1 - 2014 U6 - http://dx.doi.org/10.1124/dmd.114.057885 SN - 1521-009X VL - 42 IS - 6 SP - 1022 EP - 1030 PB - ASPET CY - Bethesda, Md. ER - TY - JOUR A1 - Scheer, Nico A1 - Wolf, C. Roland T1 - Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications JF - Xenobiotica N2 - 1. Drug metabolizing enzymes and transporters play important roles in the absorption, metabolism, tissue distribution and excretion of various compounds and their metabolites and thus can significantly affect their efficacy and safety. Furthermore, they can be involved in drug–drug interactions which can result in adverse responses, life-threatening toxicity or impaired efficacy. Significant species differences in the interaction of compounds with drug metabolizing enzymes and transporters have been described. 2. In order to overcome the limitation of animal models in accurately predicting human responses, a large variety of mouse models humanized for drug metabolizing enzymes and to a lesser extent drug transporters have been created. 3. This review summarizes the literature describing these mouse models and their key applications in studying the role of drug metabolizing enzymes and transporters in drug bioavailability, tissue distribution, clearance and drug–drug interactions as well as in human metabolite testing and risk assessment. 4. Though such humanized mouse models have certain limitations, there is great potential for their use in basic research and for testing and development of new medicines. These limitations and future potentials will be discussed. KW - transporters KW - human metabolites KW - drug metabolising enzymes KW - drug–drug interactions KW - bioavailability Y1 - 2014 U6 - http://dx.doi.org/10.3109/00498254.2013.815831 SN - 1366-5928 VL - 44 IS - 2 SP - 96 EP - 108 PB - Taylor & Francis CY - Abingdon ER - TY - JOUR A1 - Hentschke, Reinhard A1 - Hager, Jonathan A1 - Hojdis, Nils T1 - Molecular Modeling Approach to the Prediction of Mechanical Properties of Silica-Reinforced Rubbers JF - Journal of Applied Polymer Science N2 - Recently, we have suggested a nanomechanical model for dissipative loss in filled elastomer networks in the context of the Payne effect. The mechanism is based on a total interfiller particle force exhibiting an intermittent loop, due to the combination of short-range repulsion and dispersion forces with a long-range elastic attraction. The sum of these forces leads, under external strain, to a spontaneous instability of “bonds” between the aggregates in a filler network and attendant energy dissipation. Here, we use molecular dynamics simulations to obtain chemically realistic forces between surface modified silica particles. The latter are combined with the above model to estimate the loss modulus and the low strain storage modulus in elastomers containing the aforementioned filler-compatibilizer systems. The model is compared to experimental dynamic moduli of silica filled rubbers. We find good agreement between the model predictions and the experiments as function of the compatibilizer's molecular structure and its bulk concentration. KW - theory and modeling KW - supramolecular structures KW - rubber KW - mechanical properties KW - elastomers Y1 - 2014 U6 - http://dx.doi.org/10.1002/app.40806 SN - 1097-4628 VL - 131 IS - 18 SP - 1 EP - 9 PB - Wiley CY - New York, NY ER - TY - JOUR A1 - Schroeter, Rebecca A1 - Hoffmann, Tamara A1 - Voigt, Birgit A1 - Meyer, Hanna A1 - Bleisteiner, Monika A1 - Muntel, Jan A1 - Jürgen, Britta A1 - Albrecht, Dirk A1 - Becher, Dörte A1 - Lalk, Michael A1 - Evers, Stefan A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Putzer, Harald A1 - Hecker, Michael A1 - Schweder, Thomas A1 - Bremer, Erhard T1 - Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges JF - PLoS ONE N2 - The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress. Y1 - 2014 U6 - http://dx.doi.org/10.1371/journal.pone.0080956 SN - 1932-6203 VL - 8 IS - 11 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Handtke, Stefan A1 - Schroeter, Rebecca A1 - Jürgen, Britta A1 - Methling, Karen A1 - Schlüter, Rabea A1 - Albrecht, Dirk A1 - Hijum, Sacha A. F. T. van A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Lalk, Michael A1 - Schweder, Thomas A1 - Hecker, Michael A1 - Voigt, Birgit T1 - Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress JF - PLOS one N2 - Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus. Y1 - 2014 U6 - http://dx.doi.org/10.1371/journal.pone.0085625 SN - 1932-6203 VL - 9 IS - 1 PB - PLOS CY - San Francisco ER -