TY - JOUR A1 - Welden, Rene A1 - Scheja, Sabrina A1 - Schöning, Michael Josef A1 - Wagner, Patrick A1 - Wagner, Torsten T1 - Electrochemical Evaluation of Light‐Addressable Electrodes Based on TiO2 for the Integration in Lab‐on‐Chip Systems JF - physica status solidi a : applications and materials sciences N2 - In lab-on-chip systems, electrodes are important for the manipulation (e.g., cell stimulation, electrolysis) within such systems. An alternative to commonly used electrode structures can be a light-addressable electrode. Here, due to the photoelectric effect, the conducting area can be adjusted by modification of the illumination area which enables a flexible control of the electrode. In this work, titanium dioxide based light-addressable electrodes are fabricated by a sol–gel technique and a spin-coating process, to deposit a thin film on a fluorine-doped tin oxide glass. To characterize the fabricated electrodes, the thickness, and morphological structure are measured by a profilometer and a scanning electron microscope. For the electrochemical behavior, the dark current and the photocurrent are determined for various film thicknesses. For the spatial resolution behavior, the dependency of the photocurrent while changing the area of the illuminated area is studied. Furthermore, the addressing of single fluid compartments in a three-chamber system, which is added to the electrode, is demonstrated. Y1 - 2018 U6 - https://doi.org/10.1002/pssa.201800150 SN - 1862-6319 VL - 215 IS - 15 SP - Article number 1800150 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Michaux, F. A1 - Mattern, P. A1 - Kallweit, Stephan T1 - RoboPIV: how robotics enable PIV on a large industrial scale JF - Measurement Science and Technology N2 - This work demonstrates how the interaction between particle image velocimetry (PIV) and robotics can massively increase measurement efficiency. The interdisciplinary approach is shown using the complex example of an automated, large scale, industrial environment: a typical automotive wind tunnel application. Both the high degree of flexibility in choosing the measurement region and the complete automation of stereo PIV measurements are presented. The setup consists of a combination of three robots, individually used as a 6D traversing unit for the laser illumination system as well as for each of the two cameras. Synchronised movements in the same reference frame are realised through a master-slave setup with a single interface to the user. By integrating the interface into the standard wind tunnel management system, a single measurement plane or a predefined sequence of several planes can be requested through a single trigger event, providing the resulting vector fields within minutes. In this paper, a brief overview on the demands of large scale industrial PIV and the existing solutions is given. Afterwards, the concept of RoboPIV is introduced as a new approach. In a first step, the usability of a selection of commercially available robot arms is analysed. The challenges of pose uncertainty and importance of absolute accuracy are demonstrated through comparative measurements, explaining the individual pros and cons of the analysed systems. Subsequently, the advantage of integrating RoboPIV directly into the existing wind tunnel management system is shown on basis of a typical measurement sequence. In a final step, a practical measurement procedure, including post-processing, is given by using real data and results. Ultimately, the benefits of high automation are demonstrated, leading to a drastic reduction in necessary measurement time compared to non-automated systems, thus massively increasing the efficiency of PIV measurements. Y1 - 2018 U6 - https://doi.org/10.1088/1361-6501/aab5c1 SN - 1361-6501 N1 - Special Section on the 12th International Symposium on Particle Image Velocimetry (PIV 2017) VL - 29 IS - 7 SP - 074009 PB - IOP CY - Bristol ER - TY - CHAP A1 - Schulze, Sven A1 - Mühleisen, M. A1 - Feyerl, Günter T1 - Adaptive energy management strategy for a heavy-duty truck with a P2-hybrid topology T2 - 18. Internationales Stuttgarter Symposium. Proceedings Y1 - 2018 U6 - https://doi.org/10.1007/978-3-658-21194-3 SP - 75 EP - 89 PB - Springer Vieweg CY - Wiesbaden ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Oberländer, Jan A1 - Kirchner, Patrick A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Thermocatalytic Behavior of Manganese (IV) Oxide as Nanoporous Material on the Dissociation of a Gas Mixture Containing Hydrogen Peroxide JF - Nanomaterials N2 - In this article, we present an overview on the thermocatalytic reaction of hydrogen peroxide (H₂O₂) gas on a manganese (IV) oxide (MnO₂) catalytic structure. The principle of operation and manufacturing techniques are introduced for a calorimetric H₂O₂ gas sensor based on porous MnO₂. Results from surface analyses by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) of the catalytic material provide indication of the H₂O₂ dissociation reaction schemes. The correlation between theory and the experiments is documented in numerical models of the catalytic reaction. The aim of the numerical models is to provide further information on the reaction kinetics and performance enhancement of the porous MnO₂ catalyst. Y1 - 2018 U6 - https://doi.org/10.3390/nano8040262 SN - 2079-4991 VL - 8 IS - 4 PB - MDPI CY - Basel ER - TY - CHAP A1 - Scholl, Ingrid A1 - Suder, Sebastian A1 - Schiffer, Stefan T1 - Direct Volume Rendering in Virtual Reality T2 - Bildverarbeitung für die Medizin 2018 Y1 - 2018 SN - 978-3-662-56537-7 U6 - https://doi.org/10.1007/978-3-662-56537-7_79 SP - 297 EP - 302 PB - Springer Vieweg CY - Berlin ER - TY - JOUR A1 - Schirra, Julian A1 - Bissonnette, William A1 - Bramesfeld, Götz T1 - Wake-model effects on induced drag prediction of staggered boxwings JF - Aerospace Y1 - 2018 U6 - https://doi.org/10.3390/aerospace5010014 SN - 2226-4310 VL - 5 IS - 1 ER - TY - JOUR A1 - Druckenmüller, Katharina A1 - Günther, Klaus A1 - Elbers, Gereon T1 - Near-infrared spectroscopy (NIRS) as a tool to monitor exhaust air from poultry operations JF - Science of the Total Environment N2 - Intensive poultry operation systems emit a considerable volume of inorganic and organic matter in the surrounding environment. Monitoring cleaning properties of exhaust air cleaning systems and to detect small but significant changes in emission characteristics during a fattening cycle is important for both emission and fattening process control. In the present study, we evaluated the potential of near-infrared spectroscopy (NIRS) combined with chemometric techniques as a monitoring tool of exhaust air from poultry operation systems. To generate a high-quality data set for evaluation, the exhaust air of two poultry houses was sampled by applying state-of-the-art filter sampling protocols. The two stables were identical except for one crucial difference, the presence or absence of an exhaust air cleaning system. In total, twenty-one exhaust air samples were collected at the two sites to monitor spectral differences caused by the cleaning device, and to follow changes in exhaust air characteristics during a fattening period. The total dust load was analyzed by gravimetric determination and included as a response variable in multivariate data analysis. The filter samples were directly measured with NIR spectroscopy. Principal component analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA) were effective in classifying the NIR exhaust air spectra according to fattening day and origin. The results indicate that the dust load and the composition of exhaust air (inorganic or organic matter) substantially influence the NIR spectral patterns. In conclusion, NIR spectroscopy as a tool is a promising and very rapid way to detect differences between exhaust air samples based on still not clearly defined circumstances triggered during a fattening period and the availability of an exhaust air cleaning system. Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2018.02.072 SN - 0048-9697 VL - 630 SP - 536 EP - 543 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Hüning, Felix T1 - Embedded Design For IoT With Renesas Synergy Y1 - 2018 N1 - gedruckt in der Bereichsbibliothek Eupener Str. vorhanden; Document No. R01PF0164ED0100 PB - Renesas Electronics CY - Düsseldorf ER - TY - JOUR A1 - Pilas, Johanna A1 - Yazici, Y. A1 - Selmer, Thorsten A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Application of a portable multi-analyte biosensor for organic acid determination in silage JF - Sensors N2 - Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at −21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at −21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media. Y1 - 2018 U6 - https://doi.org/10.3390/s18051470 SN - 1424-8220 VL - 18 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Optimization of Cell-Based Multi-Chamber LAPS Measurements Utilizing FPGA-Controlled Laser-Diode Modules JF - physica status solidi a : applications and materials sciences N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric device, which detects concentration changes of an analyte solution on the sensor surface in a spatially resolved way. It uses a light source to generate electron–hole pairs inside the semiconductor, which are separated in the depletion region due to an applied bias voltage across the sensor structure and hence, a surface-potential-dependent photocurrent can be read out. However, depending on the beam angle of the light source, scattering effects can occur, which influence the recorded signal in LAPS-based differential measurements. To solve this problem, a novel illumination unit based on a field programmable gate array (FPGA) consisting of 16 small-sized tunable infrared laser-diode modules (LDMs) is developed. Due to the improved focus of the LDMs with a beam angle of only 2 mrad, undesirable scattering effects are minimized. Escherichia coli (E. coli) K12 bacteria are used as a test microorganism to study the extracellular acidification on the sensor surface. Furthermore, a salt bridge chamber is built up and integrated with the LAPS system enabling multi-chamber differential measurements with a single Ag/AgCl reference electrode. Y1 - 2018 U6 - https://doi.org/10.1002/pssa.201800058 SN - 1862-6319 VL - 215 IS - 15 SP - Article number 1800058 PB - Wiley-VCH CY - Weinheim ER -