TY - CHAP A1 - Barek, Jiri A1 - Fischer, Jan A1 - Navratil, Tomas A1 - Peckova, Karolina A1 - Yosypchuk, Bogdan T1 - Silver solid amalgam electrodes as sensors for chemical carcinogens N2 - The applicability of differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV) at a non-toxic meniscus-modified silver solid amalgam electrode (m-AgSAE) for the determination of trace amounts of genotoxic substances was demonstrated on the determination of micromolar and submicromolar concentrations of 3-nitrofluoranthene using methanol - 0.01 mol L-1 NaOH (9:1) mixture as a base electrolyte and of Ostazine Orange using 0.01 mol L-1 NaOH as a base electrolyte. KW - Biosensor KW - Solid amalgam electrodes KW - voltammetry KW - carcinogens KW - 3-nitrofluoranthene KW - Ostazine Orange Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1554 ER - TY - CHAP A1 - Baronas, Romas A1 - Ivanauskas, Feliksas A1 - Kulys, Juozas T1 - Mathematical modeling of biosensors based on an array of enzyme microreactors N2 - This paper presents a two-dimensional-in-space mathematical model of biosensors based on an array of enzyme microreactors immobilised on a single electrode. The modeling system acts under amperometric conditions. The microreactors were modeled by particles and by strips. The model is based on the diffusion equations containing a nonlinear term related to the Michaelis-Menten kinetics of the enzymatic reaction. The model involves three regions: an array of enzyme microreactors where enzyme reaction as well as mass transport by diffusion takes place, a diffusion limiting region where only the diffusion takes place, and a convective region, where the analyte concentration is maintained constant. Using computer simulation, the influence of the geometry of the microreactors and of the diffusion region on the biosensor response was investigated. The digital simulation was carried out using the finite difference technique. KW - Biosensor KW - Reaction-diffusion KW - modeling biosensor KW - microreactor Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1569 ER - TY - CHAP A1 - Lei, Yu A1 - Mulchandani, Priti A1 - Chen, Wilfred A1 - Mulchandani, Ashok T1 - Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface expressed organophosphorus hydrolase. 1. modified clark oxygen electrode N2 - This paper reports a first microbial biosensor for rapid and cost-effective determination of organophosphorus pesticides fenitrothion and EPN. The biosensor consisted of recombinant PNP-degrading/oxidizing bacteria Pseudomonas putida JS444 anchoring and displaying organophosphorus hydrolase (OPH) on its cell surface as biological sensing element and a dissolved oxygen electrode as the transducer. Surfaceexpressed OPH catalyzed the hydrolysis of fenitrothion and EPN to release 3-methyl-4-nitrophenol and p-nitrophenol, respectively, which were oxidized by the enzymatic machinery of Pseudomonas putida JS444 to carbon dioxide while consuming oxygen, which was measured and correlated to the concentration of organophosphates. Under the optimum operating conditions, the biosensor was able to measure as low as 277 ppb of fenitrothion and 1.6 ppm of EPN without interference from phenolic compounds and other commonly used pesticides such as carbamate pesticides, triazine herbicides and organophosphate pesticides without nitrophenyl substituent. The applicability of the biosensor to lake water was also demonstrated. KW - Biosensor KW - Organophosphorus KW - fenitrothion KW - EPN KW - biosensor KW - Pseudomonas putida Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1573 ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Abdelghani, Adnane T1 - Advancements in Nanotechnology and Microelectronics (ANM '09) <2009, Tunisia>: Proceedings book ; Tunisia, November, 13 & 14, 2009 / Humboldt Kolleg. Ed. by Michael J. Schöning ; Adnane Abdelghani N2 - The ANM’09 multi-disciplinary scientific program includes topics in the fields of "Nanotechnology and Microelectronics" ranging from "Bio/Micro/Nano Materials and Interfacing" aspects, "Chemical and Bio-Sensors", "Magnetic and Superconducting Devices", "MEMS and Microfluidics" over "Theoretical Aspects, Methods and Modelling" up to the important bridging "Academics meet Industry". KW - Nanopartikel KW - Biosensor KW - Supraleiter KW - MEMS KW - Biophoton KW - Nanotechnology ; Microelectronics ; Biosensors ; Superconductor ; MEMS Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-3113 ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Abdelghani, Adnane T1 - Nanoscale Science and Technology (NS&T’12) : Proceedings Book Humboldt Kolleg <2012, Tunisia> ; Tunisia, 17-19 March, 2012 / ed. by Michael J. Schöning ; Adnane Abdelghani N2 - Proceedings of the 2nd Humboldt Kolleg, Hammamet, Tunisia Organizer: Alexander von Humboldt Stiftung, Germany. pdf 184 p. Welcome Address Dear Participants, Welcome to the 2nd Humboldt Kolleg in “Nanoscale Science and Technology” (NS&T’12) in Tunisia, sponsored by the "Alexander von Humboldt" foundation. The NS&T’12 multidisciplinary scientific program includes seven "hot" topics dealing with "Nanoscale Science and Technology" covering basic and application-oriented research as well as industrial (market) aspects: - Molecular Biophyics, Spectroscopy Techniques, Imaging Microscopy - Nanomaterials Synthesis for Medicine and Bio-chemical Sensors - Nanostructures, Semiconductors, Photonics and Nanodevices - New Technologies in Market Industry - Environment, Electro-chemistry, Bio-polymers and Fuel Cells - Nanomaterials, Photovoltaic, Modelling, Quantum Physics - Microelectronics, Sensors Networks and Embedded Systems We are deeply indebted to all members of the Scientific Committee and General Chairs for joint Sessions and to all speakers and chairmen, who have dedicated invaluable time and efforts for the realization of this event. On behalf of the Organizing Committee, we are cordially inviting you to join the conference and hope that your stay will be fruitful, rewarding and enjoyable. Prof. Dr. Michael J. Schöning, Prof. Dr. Adnane Abdelghani KW - Biosensor KW - Nanotechnologie KW - Nanomaterial KW - Nano Materials KW - Bio-Sensors Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-3544 ER -