TY - JOUR A1 - Uysal, Karya A1 - Firat, Ipek Serat A1 - Creutz, Till A1 - Aydin, Inci Cansu A1 - Artmann, Gerhard A1 - Teusch, Nicole A1 - Temiz Artmann, Aysegül T1 - A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes JF - membranes N2 - Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here. Y1 - 2022 U6 - http://dx.doi.org/10.3390/membranes13010022 N1 - This article belongs to the Special Issue "Latest Scientific Discoveries in Polymer Membranes" VL - 2023 IS - 13(1) PB - MDPI CY - Basel ER - TY - JOUR A1 - Thiebes, Anja Lena A1 - Klein, Sarah A1 - Zingsheim, Jonas A1 - Möller, Georg H. A1 - Gürzing, Stefanie A1 - Reddemann, Manuel A. A1 - Behbahani, Mehdi A1 - Cornelissen, Christian G. T1 - Effervescent atomizer as novel cell spray technology to decrease the gas-to-liquid ratio JF - pharmaceutics N2 - Cell spraying has become a feasible application method for cell therapy and tissue engineering approaches. Different devices have been used with varying success. Often, twin-fluid atomizers are used, which require a high gas velocity for optimal aerosolization characteristics. To decrease the amount and velocity of required air, a custom-made atomizer was designed based on the effervescent principle. Different designs were evaluated regarding spray characteristics and their influence on human adipose-derived mesenchymal stromal cells. The arithmetic mean diameters of the droplets were 15.4–33.5 µm with decreasing diameters for increasing gas-to-liquid ratios. The survival rate was >90% of the control for the lowest gas-to-liquid ratio. For higher ratios, cell survival decreased to approximately 50%. Further experiments were performed with the design, which had shown the highest survival rates. After seven days, no significant differences in metabolic activity were observed. The apoptosis rates were not influenced by aerosolization, while high gas-to-liquid ratios caused increased necrosis levels. Tri-lineage differentiation potential into adipocytes, chondrocytes, and osteoblasts was not negatively influenced by aerosolization. Thus, the effervescent aerosolization principle was proven suitable for cell applications requiring reduced amounts of supplied air. This is the first time an effervescent atomizer was used for cell processing. KW - tri-lineage differentiation KW - survival KW - twin-fluid atomizer KW - adipose-derived stromal cells (ASCs) KW - cell atomization KW - cell aerosolization Y1 - 2022 U6 - http://dx.doi.org/10.3390/pharmaceutics14112421 N1 - This article belongs to the Special Issue "Stromal, Stem, Signaling Cells: The Multiple Roles and Applications of Mesenchymal Cells" VL - 14 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Herssens, Nolan A1 - Cowburn, James A1 - Albracht, Kirsten A1 - Braunstein, Bjoern A1 - Cazzola, Dario A1 - Colyer, Steffi A1 - Minetti, Alberto E. A1 - Pavei, Gaspare A1 - Rittweger, Jörn A1 - Weber, Tobias A1 - Green, David A. ED - Cattaneo, Luigi T1 - Movement in low gravity environments (MoLo) programme – the MoLo-L.O.O.P. study protocol JF - PLOS ONE / Public Library of Science N2 - Exposure to prolonged periods in microgravity is associated with deconditioning of the musculoskeletal system due to chronic changes in mechanical stimulation. Given astronauts will operate on the Lunar surface for extended periods of time, it is critical to quantify both external (e.g., ground reaction forces) and internal (e.g., joint reaction forces) loads of relevant movements performed during Lunar missions. Such knowledge is key to predict musculoskeletal deconditioning and determine appropriate exercise countermeasures associated with extended exposure to hypogravity. Y1 - 2022 U6 - http://dx.doi.org/10.1371/journal.pone.0278051 SN - 1932-6203 VL - 17 IS - 11 PB - Plos CY - San Francisco ER -