TY - CHAP A1 - Borggräfe, Andreas A1 - Dachwald, Bernd T1 - Mission performance evaluation for solar sails using a refined SRP force model with variable optical coefficients T2 - 2nd International Symposium on Solar Sailing N2 - Solar sails provide ignificant advantages over other low-thrust propulsion systems because they produce thrust by the momentum exchange from solar radiation pressure (SRP) and thus do not consume any propellant.The force exerted on a very thin sail foil basically depends on the light incidence angle. Several analytical SRP force models that describe the SRP force acting on the sail have been established since the 1970s. All the widely used models use constant optical force coefficients of the reflecting sail material. In 2006,MENGALI et al. proposed a refined SRP force model that takes into account the dependancy of the force coefficients on the light incident angle,the sail’s distance from the sun (and thus the sail emperature) and the surface roughness of the sail material [1]. In this paper, the refined SRP force model is compared to the previous ones in order to identify the potential impact of the new model on the predicted capabilities of solar sails in performing low-cost interplanetary space missions. All force models have been implemented within InTrance, a global low-thrust trajectory optimization software utilizing evolutionary neurocontrol [2]. Two interplanetary rendezvous missions, to Mercury and the near-Earth asteroid 1996FG3, are investigated. Two solar sail performances in terms of characteristic acceleration are examined for both scenarios, 0.2 mm/s2 and 0.5 mm/s2, termed “low” and “medium” sail performance. In case of the refined SRP model, three different values of surface roughness are chosen, h = 0 nm, 10 nm and 25 nm. The results show that the refined SRP force model yields shorter transfer times than the standard model. Y1 - 2010 N1 - 2nd International Symposium on Solar Sailing, ISSS 2010, 2010-07-20 - 2010-07-22. New York City College of Technology of the City University of New York, USA SP - 1 EP - 6 ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Staat, Manfred T1 - FEM shakedown analysis of Kirchhoff-Love plates under uncertainty of strength T2 - Proceedings of UNCECOMP 2021 N2 - A new formulation to calculate the shakedown limit load of Kirchhoff plates under stochastic conditions of strength is developed. Direct structural reliability design by chance con-strained programming is based on the prescribed failure probabilities, which is an effective approach of stochastic programming if it can be formulated as an equivalent deterministic optimization problem. We restrict uncertainty to strength, the loading is still deterministic. A new formulation is derived in case of random strength with lognormal distribution. Upper bound and lower bound shakedown load factors are calculated simultaneously by a dual algorithm. Y1 - 2021 SN - 978-618-85072-6-5 U6 - https://doi.org/10.7712/120221.8041.19047 N1 - UNCECOMP 2021, 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering, streamed from Athens, Greece, 28–30 June 2021. SP - 323 EP - 338 ER - TY - CHAP A1 - Walenta, Robert A1 - Schellekens, Twan A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - A decentralised system approach for controlling AGVs with ROS T2 - AFRICON, Proceedings Y1 - 2017 SN - 978-1-5386-2775-4 U6 - https://doi.org/10.1109/AFRCON.2017.8095693 SN - 2153-0033 N1 - AFRICON <2017, 18-20 Sept., Cape Town, South Africa> SP - 1436 EP - 1441 PB - IEEE ER - TY - CHAP A1 - Harzheim, Thomas A1 - Heuermann, Holger A1 - Marso, Michel T1 - An Adaptive Biasing Method for SRD Comb Generators T2 - 2016 German Microwave Conference (GeMiC) Y1 - 2016 U6 - https://doi.org/10.1109/GEMIC.2016.7461613 N1 - GeMiC 2016 ; March 14–16, 2016, Bochum, Germany SP - 289 EP - 292 PB - IEEE ER - TY - CHAP A1 - Schoutetens, Frederic A1 - Dachwald, Bernd A1 - Heiligers, Jeannette T1 - Optimisation of photon-sail trajectories in the alpha-centauri system using evolutionary neurocontrol T2 - 8th ICATT 2021 N2 - With the increased interest for interstellar exploration after the discovery of exoplanets and the proposal by Breakthrough Starshot, this paper investigates the optimisation of photon-sail trajectories in Alpha Centauri. The prime objective is to find the optimal steering strategy for a photonic sail to get captured around one of the stars after a minimum-time transfer from Earth. By extending the idea of the Breakthrough Starshot project with a deceleration phase upon arrival, the mission’s scientific yield will be increased. As a secondary objective, transfer trajectories between the stars and orbit-raising manoeuvres to explore the habitable zones of the stars are investigated. All trajectories are optimised for minimum time of flight using the trajectory optimisation software InTrance. Depending on the sail technology, interstellar travel times of 77.6-18,790 years can be achieved, which presents an average improvement of 30% with respect to previous work. Still, significant technological development is required to reach and be captured in the Alpha-Centauri system in less than a century. Therefore, a fly-through mission arguably remains the only option for a first exploratory mission to Alpha Centauri, but the enticing results obtained in this work provide perspective for future long-residence missions to our closest neighbouring star system. Y1 - 2021 N1 - 8th ICATT (International Conference on Astrodynamics Tools and Techniques), 23 - 25 June 2021, Virtual SP - 1 EP - 15 ER - TY - CHAP A1 - Eggert, Mathias A1 - Edelbauer, Thomas Rudolf T1 - Gamified Information Systems for Assisted Living Facilities - Relevant Design Guidelines, Affordances and Adoption Barriers N2 - Gamification and gamified information systems (GIS) apply video game elements to encourage the work on boring and everyday tasks. Meanwhile, several research works provide evidence that gamification increases efficiency and effectivity of such tasks. The paper at hand investigates the health care sector, which is challenged with cost pressure and suffers in process efficiency. We hypothesize that GIS may improve the efficiency and quality of care processes. By applying an interview-based content analysis, the paper at hand evaluates gamification elements in an assisted living environment and provides three research contributions. First, insights into relevant GIS affordances and application examples for assisted living facilities are given. Second, assisted living experts evaluate GIS design guidelines. Both the relevant affordances and design principles comprise a basis for the development of a GIS for social workers in assisted living facilities. Third, potential adoption barriers and design guidelines for GIS in assisted living are presented. Y1 - 2020 U6 - https://doi.org/10.30844/wi_2020_f3-eggert N1 - 15. Internationale Tagung zur Wirtschaftsinformatik, 09. – 11.03.2020, Potsdam PB - GITO CY - Berlin ER - TY - CHAP A1 - Seefeldt, Patric A1 - Bauer, Waldemar A1 - Dachwald, Bernd A1 - Grundmann, Jan Thimo A1 - Straubel, Marco A1 - Sznajder, Maciej A1 - Tóth, Norbert A1 - Zander, Martin E. T1 - Large lightweight deployable structures for planetary defence: solar sail propulsion, solar concentrator payloads, large-scale photovoltaic power T2 - 4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy Y1 - 2015 N1 - IAA-PDC-15-P-20 ER - TY - CHAP A1 - Kapoor, Hrshi A1 - Boller, Christian A1 - Giljohann, Sebastian A1 - Braun, Carsten T1 - Strategies for structural health monitoring implementation potential assessment in aircraft operational life extension considerations T2 - 2nd International Symposium on NDT in Aerospace : November 22-24, 2010 Hamburg, Germany Y1 - 2010 SN - 978-3-940283-28-3 PB - Dt. Gesellschaft für Zerstörungsfreie Prüfung CY - Berlin ER - TY - CHAP A1 - Becker, Jörg A1 - Bergener, Philipp A1 - Breuker, Dominic A1 - Delfmann, Patrick A1 - Eggert, Mathias T1 - An Efficient Business Process Compliance Checking Approach T2 - Governance and Sustainability in Information Systems. Managing the Transfer and Diffusion of IT : IFIP WG 8.6 International Working Conference, Hamburg, Germany, September 22-24, 2011. Proceedings Y1 - 2011 U6 - https://doi.org/10.1007/978-3-642-24148-2_19 SP - 282 EP - 287 PB - Springer CY - Berlin, Heidelberg ER - TY - CHAP A1 - Lahrs, Lennart A1 - Krisam, Pierre A1 - Herrmann, Ulf T1 - Envisioning a collaborative energy system planning platform for the energy transition at the district level T2 - ECOS 2023. The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems N2 - Residential and commercial buildings account for more than one-third of global energy-related greenhouse gas emissions. Integrated multi-energy systems at the district level are a promising way to reduce greenhouse gas emissions by exploiting economies of scale and synergies between energy sources. Planning district energy systems comes with many challenges in an ever-changing environment. Computational modelling established itself as the state-of-the-art method for district energy system planning. Unfortunately, it is still cumbersome to combine standalone models to generate insights that surpass their original purpose. Ideally, planning processes could be solved by using modular tools that easily incorporate the variety of competing and complementing computational models. Our contribution is a vision for a collaborative development and application platform for multi-energy system planning tools at the district level. We present challenges of district energy system planning identified in the literature and evaluate whether this platform can help to overcome these challenges. Further, we propose a toolkit that represents the core technical elements of the platform. Lastly, we discuss community management and its relevance for the success of projects with collaboration and knowledge sharing at their core. KW - Energy system planning KW - District energy planning platform KW - District data model KW - Renewable energy integration Y1 - 2023 U6 - https://doi.org/10.52202/069564-0284 N1 - ECOS 2023. The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 25-30 JUNE, 2023, Las Palmas de Gran Canaria, Spain SP - 3163 EP - 3170 PB - Procedings of ECOS 2023 ER -