TY - THES A1 - Bayer, Robin T1 - Development of a novel in-vitro vascular model for determination of physiological and pathophysiological mechanobiology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:38-362212 N1 - Dissertation, Universität zu Köln, 2021 PB - Universität zu Köln CY - Köln ER - TY - JOUR A1 - Ball, Christopher Stephen A1 - Vögele, Stefan A1 - Grajewski, Matthias A1 - Kuckshinrichs, Wilhelm T1 - E-mobility from a multi-actor point of view: Uncertainties and their impacts JF - Technological Forecasting and Social Change Y1 - 2021 SN - 0040-1625 U6 - http://dx.doi.org/10.1016/j.techfore.2021.120925 VL - 170 IS - Art. 120925 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Alexyuk, Madina A1 - Bogoyavlenskiy, Andrey A1 - Alexyuk, Pavel A1 - Moldakhanov, Yergali A1 - Berezin, Vladimir A1 - Digel, Ilya T1 - Epipelagic microbiome of the Small Aral Sea: Metagenomic structure and ecological diversity JF - MicrobiologyOpen N2 - Microbial diversity studies regarding the aquatic communities that experienced or are experiencing environmental problems are essential for the comprehension of the remediation dynamics. In this pilot study, we present data on the phylogenetic and ecological structure of microorganisms from epipelagic water samples collected in the Small Aral Sea (SAS). The raw data were generated by massive parallel sequencing using the shotgun approach. As expected, most of the identified DNA sequences belonged to Terrabacteria and Actinobacteria (40% and 37% of the total reads, respectively). The occurrence of Deinococcus-Thermus, Armatimonadetes, Chloroflexi in the epipelagic SAS waters was less anticipated. Surprising was also the detection of sequences, which are characteristic for strict anaerobes—Ignavibacteria, hydrogen-oxidizing bacteria, and archaeal methanogenic species. We suppose that the observed very broad range of phylogenetic and ecological features displayed by the SAS reads demonstrates a more intensive mixing of water masses originating from diverse ecological niches of the Aral-Syr Darya River basin than presumed before. KW - ecological structure KW - metagenomics KW - microbial diversity KW - shotgun sequencing KW - Small Aral Sea Y1 - 2021 U6 - http://dx.doi.org/10.1002/mbo3.1142 SN - 2045-8827 VL - 10 IS - 1 SP - 1 EP - 10 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Albanna, Walid A1 - Conzen, Catharina A1 - Weiss, Miriam A1 - Seyfried, Katharina A1 - Kotliar, Konstantin A1 - Schmidt, Tobias Philip A1 - Kuerten, David A1 - Hescheler, Jürgen A1 - Bruecken, Anne A1 - Schmidt-Trucksäss, Arno A1 - Neumaier, Felix A1 - Wiesmann, Martin A1 - Clusmann, Hans A1 - Schubert, Gerrit Alexander T1 - Non-invasive assessment of neurovascular coupling after aneurysmal subarachnoid hemorrhage: a prospective observational trial using retinal vessel analysis JF - Frontiers in Neurology N2 - Delayed cerebral ischemia (DCI) is a common complication after aneurysmal subarachnoid hemorrhage (aSAH) and can lead to infarction and poor clinical outcome. The underlying mechanisms are still incompletely understood, but animal models indicate that vasoactive metabolites and inflammatory cytokines produced within the subarachnoid space may progressively impair and partially invert neurovascular coupling (NVC) in the brain. Because cerebral and retinal microvasculature are governed by comparable regulatory mechanisms and may be connected by perivascular pathways, retinal vascular changes are increasingly recognized as a potential surrogate for altered NVC in the brain. Here, we used non-invasive retinal vessel analysis (RVA) to assess microvascular function in aSAH patients at different times after the ictus. Y1 - 2021 U6 - http://dx.doi.org/10.3389/fneur.2021.690183 SN - 1664-2295 VL - 12 IS - 12 SP - 1 EP - 15 ER - TY - JOUR A1 - Akimbekov, Nuraly A1 - Digel, Ilya A1 - Abdieva, Gulzhamal A1 - Ualieva, Perizat A1 - Tastambek, Kuanysh T1 - Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data JF - Biofuels N2 - The vast metabolic potential of microbes in brown coal (lignite) processing and utilization can greatly contribute to innovative approaches to sustainable production of high-value products from coal. In this study, the multi-faceted and complex coal biosolubilization process by Bacillus sp. RKB 7 isolate from the Kazakhstan coal-mining soil is reported, and the derived products are characterized. Lignite solubilization tests performed for surface and suspension cultures testify to the formation of numerous soluble lignite-derived substances. Almost 24% of crude lignite (5% w/v) was solubilized within 14 days under slightly alkaline conditions (pH 8.2). FTIR analysis revealed various functional groups in the obtained biosolubilization products. Analyses of the lignite-derived humic products by UV-Vis and fluorescence spectrometry as well as elemental analysis yielded compatible results indicating the emerging products had a lower molecular weight and degree of aromaticity. Furthermore, XRD and SEM analyses were used to evaluate the biosolubilization processes from mineralogical and microscopic points of view. The findings not only contribute to a deeper understanding of microbe–mineral interactions in coal environments, but also contribute to knowledge of coal biosolubilization and bioconversion with regard to sustainable production of humic substances. The detailed and comprehensive analyses demonstrate the huge biotechnological potential of Bacillus sp. for agricultural productivity and environmental health. KW - humic acid KW - Bacillus sp KW - lignite KW - Biosolubilization Y1 - 2021 SN - 1759-7277 VL - 12 IS - 3 SP - 247 EP - 258 PB - Taylor & Francis CY - London ER -