TY - JOUR A1 - Haeger, Gerrit A1 - Wirges, Jessika A1 - Tanzmann, Nicole A1 - Oyen, Sven A1 - Jolmes, Tristan A1 - Jaeger, Karl-Erich A1 - Schörken, Ulrich A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - Chaperone assisted recombinant expression of a mycobacterial aminoacylase in Vibrio natriegens and Escherichia coli capable of N-lauroyl-L-amino acid synthesis JF - Microbial Cell Factories N2 - Background Aminoacylases are highly promising enzymes for the green synthesis of acyl-amino acids, potentially replacing the environmentally harmful Schotten-Baumann reaction. Long-chain acyl-amino acids can serve as strong surfactants and emulsifiers, with application in cosmetic industries. Heterologous expression of these enzymes, however, is often hampered, limiting their use in industrial processes. Results We identified a novel mycobacterial aminoacylase gene from Mycolicibacterium smegmatis MKD 8, cloned and expressed it in Escherichia coli and Vibrio natriegens using the T7 overexpression system. The recombinant enzyme was prone to aggregate as inclusion bodies, and while V. natriegens Vmax™ could produce soluble aminoacylase upon induction with isopropyl β-d-1-thiogalactopyranoside (IPTG), E. coli BL21 (DE3) needed autoinduction with lactose to produce soluble recombinant protein. We successfully conducted a chaperone co-expression study in both organisms to further enhance aminoacylase production and found that overexpression of chaperones GroEL/S enhanced aminoacylase activity in the cell-free extract 1.8-fold in V. natriegens and E. coli. Eventually, E. coli ArcticExpress™ (DE3), which co-expresses cold-adapted chaperonins Cpn60/10 from Oleispira antarctica, cultivated at 12 °C, rendered the most suitable expression system for this aminoacylase and exhibited twice the aminoacylase activity in the cell-free extract compared to E. coli BL21 (DE3) with GroEL/S co-expression at 20 °C. The purified aminoacylase was characterized based on hydrolytic activities, being most stable and active at pH 7.0, with a maximum activity at 70 °C, and stability at 40 °C and pH 7.0 for 5 days. The aminoacylase strongly prefers short-chain acyl-amino acids with smaller, hydrophobic amino acid residues. Several long-chain amino acids were fairly accepted in hydrolysis as well, especially N-lauroyl-L-methionine. To initially evaluate the relevance of this aminoacylase for the synthesis of N-acyl-amino acids, we demonstrated that lauroyl-methionine can be synthesized from lauric acid and methionine in an aqueous system. Conclusion Our results suggest that the recombinant enzyme is well suited for synthesis reactions and will thus be further investigated. KW - Acyl-amino acids KW - Inclusion bodies KW - Chaperone co-expression KW - Vibrio natriegens KW - Aminoacylase Y1 - 2023 U6 - http://dx.doi.org/10.1186/s12934-023-02079-1 SN - 1475-2859 N1 - Corresponding author: Petra Siegert IS - 22 SP - Article number: 77 (2023) PB - Springer Nature ER - TY - JOUR A1 - Janus, Kevin Alexander A1 - Achtsnicht, Stefan A1 - Tempel, Laura A1 - Drinic, Aleksaner A1 - Kopp, Alexander A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Influence of fibroin membrane composition and curing parameters on the performance of a biodegradable enzymatic biosensor manufactured from Silicon-Free Carbon JF - Physica status solidi : pss. A, Applications and materials science N2 - Herein, fibroin, polylactide (PLA), and carbon are investigated for their suitability as biocompatible and biodegradable materials for amperometric biosensors. For this purpose, screen-printed carbon electrodes on the biodegradable substrates fibroin and PLA are modified with a glucose oxidase membrane and then encapsulated with the biocompatible material Ecoflex. The influence of different curing parameters of the carbon electrodes on the resulting biosensor characteristics is studied. The morphology of the electrodes is investigated by scanning electron microscopy, and the biosensor performance is examined by amperometric measurements of glucose (0.5–10 mM) in phosphate buffer solution, pH 7.4, at an applied potential of 1.2 V versus a Ag/AgCl reference electrode. Instead of Ecoflex, fibroin, PLA, and wound adhesive are tested as alternative encapsulation compounds: a series of swelling tests with different fibroin compositions, PLA, and Ecoflex has been performed before characterizing the most promising candidates by chronoamperometry. Therefore, the carbon electrodes are completely covered with the particular encapsulation material. Chronoamperometric measurements with H2O2 concentrations between 0.5 and 10 mM enable studying the leakage current behavior. KW - amperometric biosensors KW - biocompatible KW - biodegradabl KW - encapsulation materials KW - fibroin Y1 - 2023 U6 - http://dx.doi.org/10.1002/pssa.202300081 SN - 1862-6300 (Print) SN - 1862-6319 (Online) N1 - Corresponding author: Michael J. Schöning VL - 220 IS - 22 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Achtsnicht, Stefan A1 - Pourshahidi, Ali Mohammad A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Multiplex detection of different magnetic beads using frequency scanning in magnetic frequency mixing technique JF - Sensors N2 - In modern bioanalytical methods, it is often desired to detect several targets in one sample within one measurement. Immunological methods including those that use superparamagnetic beads are an important group of techniques for these applications. The goal of this work is to investigate the feasibility of simultaneously detecting different superparamagnetic beads acting as markers using the magnetic frequency mixing technique. The frequency of the magnetic excitation field is scanned while the lower driving frequency is kept constant. Due to the particles’ nonlinear magnetization, mixing frequencies are generated. To record their amplitude and phase information, a direct digitization of the pickup-coil’s signal with subsequent Fast Fourier Transformation is performed. By synchronizing both magnetic beads using frequency scanning in magnetic frequency mixing technique magnetic fields, a stable phase information is gained. In this research, it is shown that the amplitude of the dominant mixing component is proportional to the amount of superparamagnetic beads inside a sample. Additionally, it is shown that the phase does not show this behaviour. Excitation frequency scans of different bead types were performed, showing different phases, without correlation to their diverse amplitudes. Two commercially available beads were selected and a determination of their amount in a mixture is performed as a demonstration for multiplex measurements. KW - frequency mixing magnetic detection KW - magnetic sandwich immunoassay KW - multiparametric immunoassays Y1 - 2019 U6 - http://dx.doi.org/10.3390/s19112599 SN - 1424-8220 VL - 19 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Falkenberg, Fabian A1 - Voß, Leonie A1 - Bott, Michael A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - New robust subtilisins from halotolerant and halophilic Bacillaceae JF - Applied Microbiology and Biotechnology N2 - The aim of the present study was the characterisation of three true subtilisins and one phylogenetically intermediate subtilisin from halotolerant and halophilic microorganisms. Considering the currently growing enzyme market for efficient and novel biocatalysts, data mining is a promising source for novel, as yet uncharacterised enzymes, especially from halophilic or halotolerant Bacillaceae, which offer great potential to meet industrial needs. Both halophilic bacteria Pontibacillus marinus DSM 16465ᵀ and Alkalibacillus haloalkaliphilus DSM 5271ᵀ and both halotolerant bacteria Metabacillus indicus DSM 16189 and Litchfieldia alkalitelluris DSM 16976ᵀ served as a source for the four new subtilisins SPPM, SPAH, SPMI and SPLA. The protease genes were cloned and expressed in Bacillus subtilis DB104. Purification to apparent homogeneity was achieved by ethanol precipitation, desalting and ion-exchange chromatography. Enzyme activity could be observed between pH 5.0–12.0 with an optimum for SPPM, SPMI and SPLA around pH 9.0 and for SPAH at pH 10.0. The optimal temperature for SPMI and SPLA was 70 °C and for SPPM and SPAH 55 °C and 50 °C, respectively. All proteases showed high stability towards 5% (w/v) SDS and were active even at NaCl concentrations of 5 M. The four proteases demonstrate potential for future biotechnological applications. KW - Biotechnological application KW - Bacillaceae KW - Subtilisin KW - Subtilases KW - Halotolerant protease Y1 - 2023 U6 - http://dx.doi.org/10.1007/s00253-023-12553-w SN - 1432-0614 N1 - Corresponding author: Petra Siegert VL - 107 SP - 3939 EP - 3954 PB - Springer Nature CY - Berlin ER - TY - JOUR A1 - Achtsnicht, Stefan A1 - Tödter, Julia A1 - Niehues, Julia A1 - Telöken, Matthias A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim A1 - Schröper, Florian T1 - 3D printed modular immunofiltration columns for frequency mixing-based multiplex magnetic immunodetection JF - Sensors N2 - For performing point-of-care molecular diagnostics, magnetic immunoassays constitute a promising alternative to established enzyme-linked immunosorbent assays (ELISA) because they are fast, robust and sensitive. Simultaneous detection of multiple biomolecular targets from one body fluid sample is desired. The aim of this work is to show that multiplex magnetic immunodetection based on magnetic frequency mixing by means of modular immunofiltration columns prepared for different targets is feasible. By calculations of the magnetic response signal, the required spacing between the modules was determined. Immunofiltration columns were manufactured by 3D printing and antibody immobilization was performed in a batch approach. It was shown experimentally that two different target molecules in a sample solution could be individually detected in a single assaying step with magnetic measurements of the corresponding immobilization filters. The arrangement order of the filters and of a negative control did not influence the results. Thus, a simple and reliable approach to multi-target magnetic immunodetection was demonstrated. Y1 - 2019 U6 - http://dx.doi.org/10.3390/s19010148 SN - 1424-8220 VL - 19 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Achtsnicht, Stefan A1 - Schönenborn, Kristina A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Measurement of the magnetophoretic velocity of different superparamagnetic beads JF - Journal of Magnetism and Magnetic Materials N2 - The movement of magnetic beads due to a magnetic field gradient is of great interest in different application fields. In this report we present a technique based on a magnetic tweezers setup to measure the velocity factor of magnetically actuated individual superparamagnetic beads in a fluidic environment. Several beads can be tracked simultaneously in order to gain and improve statistics. Furthermore we show our results for different beads with hydrodynamic diameters between 200 and 1000 nm from diverse manufacturers. These measurement data can, for example, be used to determine design parameters for a magnetic separation system, like maximum flow rate and minimum separation time, or to select suitable beads for fixed experimental requirements. KW - magnetophoretic velocity KW - superparamagnetic bead KW - magnetic tweezers KW - magnetic separation KW - magnetic actuation Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.jmmm.2018.10.066 SN - 0304-8853 VL - 477 IS - 1 SP - 244 EP - 248 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rabehi, Amine A1 - Garlan, Benjamin A1 - Achtsnicht, Stefan A1 - Krause, Hans-Joachim A1 - Offenhäusser, Andreas A1 - Ngo, Kieu A1 - Neveu, Sophie A1 - Graff-Dubois, Stephanie A1 - Kokabi, Hamid T1 - Magnetic detection structure for Lab-on-Chip applications based on the frequency mixing technique JF - Sensors N2 - A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding. KW - Lab-on-Chip KW - magnetic sensing KW - frequency mixing KW - superparamagnetic nanoparticles KW - magnetic beads Y1 - 2018 U6 - http://dx.doi.org/10.3390/s18061747 SN - 1424-8220 VL - 18 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bertz, Morten A1 - Molinnus, Denise A1 - Schöning, Michael Josef A1 - Homma, Takayuki T1 - Real-time monitoring of H₂O₂ sterilization on individual bacillus atrophaeus spores by optical sensing with trapping Raman spectroscopy JF - Chemosensors N2 - Hydrogen peroxide (H₂O₂), a strong oxidizer, is a commonly used sterilization agent employed during aseptic food processing and medical applications. To assess the sterilization efficiency with H₂O₂, bacterial spores are common microbial systems due to their remarkable robustness against a wide variety of decontamination strategies. Despite their widespread use, there is, however, only little information about the detailed time-resolved mechanism underlying the oxidative spore death by H₂O₂. In this work, we investigate chemical and morphological changes of individual Bacillus atrophaeus spores undergoing oxidative damage using optical sensing with trapping Raman microscopy in real-time. The time-resolved experiments reveal that spore death involves two distinct phases: (i) an initial phase dominated by the fast release of dipicolinic acid (DPA), a major spore biomarker, which indicates the rupture of the spore’s core; and (ii) the oxidation of the remaining spore material resulting in the subsequent fragmentation of the spores’ coat. Simultaneous observation of the spore morphology by optical microscopy corroborates these mechanisms. The dependence of the onset of DPA release and the time constant of spore fragmentation on H₂O₂ shows that the formation of reactive oxygen species from H₂O₂ is the rate-limiting factor of oxidative spore death. KW - DPA (dipicolinic acid) KW - sterilization KW - Bacillus atrophaeus spores KW - optical trapping KW - Raman spectroscopy KW - optical sensor setup Y1 - 2023 U6 - http://dx.doi.org/10.3390/chemosensors11080445 SN - 2227-9040 N1 - This article belongs to the Special Issue "Biosensors and Chemical Sensors for Food and Healthcare Monitoring—Celebrating the 10th Anniversary" VL - 8 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wendlandt, Tim A1 - Koch, Claudia A1 - Britz, Beate A1 - Liedek, Anke A1 - Schmidt, Nora A1 - Werner, Stefan A1 - Gleba, Yuri A1 - Vahidpour, Farnoosh A1 - Welden, Melanie A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System JF - Viruses N2 - Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes. KW - biosensor KW - horseradish peroxidase (HRP) KW - glucose oxidase (GOx) KW - enzyme cascade KW - turnip vein clearing virus (TVCV) KW - tobacco mosaic virus (TMV) Y1 - 2023 U6 - http://dx.doi.org/doi.org/10.3390/v15091951 SN - 1999-4915 N1 - This article belongs to the Special Issue "Tobamoviruses 2023" VL - 9 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Falkenberg, Fabian A1 - Kohn, Sophie A1 - Bott, Michael A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - Biochemical characterisation of a novel broad pH spectrum subtilisin from Fictibacillus arsenicus DSM 15822ᵀ JF - FEBS Open Bio N2 - Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822ᵀ (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5% (w/v) SDS and 5% H₂O₂ (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H₂O₂, suggest it has potential for biotechnological applications. KW - Bacillaceae KW - Biotechnological application KW - Broad pH spectrum KW - Subtilases KW - Subtilisin Y1 - 2023 U6 - http://dx.doi.org/10.1002/2211-5463.13701 SN - 2211-5463 N1 - Corresponding author: Petra Siegert VL - 13 IS - 11 SP - 2035 EP - 2046 PB - Wiley CY - Hoboken, NJ ER -