TY - JOUR A1 - Kraff, Oliver A1 - Bitz, Andreas A1 - Dammann, Philipp A1 - Ladd, Susanne C. A1 - Ladd, Mark E. A1 - Quick, Harald H. T1 - An eight-channel transmit/receive multipurpose coil for musculoskeletal MR imaging at 7 T JF - Medical Physics N2 - Purpose: MRI plays a leading diagnostic role in assessing the musculoskeletal (MSK) system and is well established for most questions at clinically used field strengths (up to 3 T). However, there are still limitations in imaging early stages of cartilage degeneration, very fine tendons and ligaments, or in locating nerve lesions, for example. 7 T MRI of the knee has already received increasing attention in the current published literature, but there is a strong need to develop new radiofrequency (RF) coils to assess more regions of the MSK system. In this work, an eight-channel transmit/receive RF array was built as a multipurpose coil for imaging some of the thus far neglected regions. An extensive coil characterization protocol and first in vivo results of the human wrist, shoulder, elbow, knee, and ankle imaged at 7 T will be presented. Methods: Eight surface loop coils with a dimension ofurn:x-wiley:00942405:media:mp7176:mp7176-math-0001 were machined from FR4 circuit board material. To facilitate easy positioning, two coil clusters, each with four loop elements, were combined to one RF transmit/receive array. An overlapped and shifted arrangement of the coil elements was chosen to reduce the mutual inductance between neighboring coils. A phantom made of body-simulating liquid was used for tuning and matching on the bench. Afterward, the S-parameters were verified on a human wrist, elbow, and shoulder. For safety validation, a detailed compliance test was performed including full wave simulations of the RF field distribution and the corresponding specific absorption rate (SAR) for all joints. In vivo images of four volunteers were assessed with gradient echo and spin echo sequences modified to obtain optimal image contrast, full anatomic coverage, and the highest spatial resolution within a reasonable acquisition time. The performance of the RF coil was additionally evaluated by in vivo B1 mapping. Results: A comparison of B1 per unit power, flip angle distribution, and anatomic images showed a fairly homogeneous excitation for the smaller joints (elbow, wrist, and ankle), while for the larger joints, the shoulder and especially the knee, B1 inhomogeneities and limited penetration depth were more pronounced. However, the greater part of the shoulder joint could be imaged.In vivo images rendered very fine anatomic details such as fascicles of the median nerve and the branching of the nerve bundles. High-resolution images of cartilage, labrum, and tendons could be acquired. Additionally, turbo spin echo (TSE) and inversion recovery sequences performed very well. Conclusions: This study demonstrates that the concept of two four-channel transmit/receive RF arrays can be used as a multipurpose coil for high-resolutionin vivo MR imaging of the musculoskeletal system at 7 T. Not only gradient echo but also typical clinical and SAR-intensive sequences such as STIR and TSE performed well. Imaging of small structures and peripheral nerves could in particular benefit from this technique. Y1 - 2010 U6 - http://dx.doi.org/10.1118/1.3517176 SN - 2473-4209 VL - 37 IS - 12 SP - 6368 EP - 6376 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Schlamann, Marc A1 - Voigt, Melanie A. A1 - Maderwald, Stefan A1 - Bitz, Andreas A1 - Kraff, Oliver A1 - Ladd, Susanne C. A1 - Ladd, Mark E. A1 - Forsting, Michael A1 - Wilhelm, Hans T1 - Exposure to high-field MRI does not affect cognitive function JF - Journal of Magnetic Resonance Imaging N2 - Purpose To assess potential cognitive deficits under the influence of static magnetic fields at various field strengths some studies already exist. These studies were not focused on attention as the most vulnerable cognitive function. Additionally, mostly no magnetic resonance imaging (MRI) sequences were performed. Materials and Methods In all, 25 right-handed men were enrolled in this study. All subjects underwent one MRI examination of 63 minutes at 1.5 T and one at 7 T within an interval of 10 to 30 days. The order of the examinations was randomized. Subjects were referred to six standardized neuropsychological tests strictly focused on attention immediately before and after each MRI examination. Differences in neuropsychological variables between the timepoints before and after each MRI examination were assessed and P-values were calculated Results Only six subtests revealed significant differences between pre- and post-MRI. In these tests the subjects achieved better results in post-MRI testing than in pre-MRI testing (P = 0.013–0.032). The other tests revealed no significant results. Conclusion The improvement in post-MRI testing is only explicable as a result of learning effects. MRI examinations, even in ultrahigh-field scanners, do not seem to have any persisting influence on the attention networks of human cognition immediately after exposure. Y1 - 2010 U6 - http://dx.doi.org/10.1002/jmri.22065 SN - 1522-2586 VL - 31 IS - 5 SP - 1061 EP - 1066 PB - Wiley-Liss CY - New York ER -