TY - JOUR A1 - Bäcker, Matthias A1 - Raue, Markus A1 - Schusser, Sebastian A1 - Jeitner, C. A1 - Breuer, L. A1 - Wagner, P. A1 - Poghossian, Arshak A1 - Förster, Arnold A1 - Mang, Thomas A1 - Schöning, Michael Josef T1 - Microfluidic chip with integrated microvalves based on temperature- and pH-responsive hydrogel thin films JF - Physica Status Solidi (a) N2 - Two types of microvalves based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) and pH-responsive poly(sodium acrylate) (PSA) hydrogel films have been developed and tested. The PNIPAAm and PSA hydrogel films were prepared by means of in situ photopolymerization directly inside the fluidic channel of a microfluidic chip fabricated by combining Si and SU-8 technologies. The swelling/shrinking properties and height changes of the PNIPAAm and PSA films inside the fluidic channel were studied at temperatures of deionized water from 14 to 36 °C and different pH values (pH 3–12) of Titrisol buffer, respectively. Additionally, in separate experiments, the lower critical solution temperature (LCST) of the PNIPAAm hydrogel was investigated by means of a differential scanning calorimetry (DSC) and a surface plasmon resonance (SPR) method. Mass-flow measurements have shown the feasibility of the prepared hydrogel films to work as an on-chip integrated temperature- or pH-responsive microvalve capable to switch the flow channel on/off. Y1 - 2012 U6 - https://doi.org/10.1002/pssa.201100763 SN - 1862-6319 VL - 209 IS - 5 SP - 839 EP - 845 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lempiäinen, Harri A1 - Couttet, Philippe A1 - Bolognani, Federico A1 - Müller, Arne A1 - Dubost, Valérie A1 - Luisier, Raphaëlle A1 - Rio-Espinola, Alberto del A1 - Vitry, Veronique A1 - Unterberger, Elif B. A1 - Thomson, John P. A1 - Treindl, Fridolin A1 - Metzger, Ute A1 - Wrzodek, Clemens A1 - Hahne, Florian A1 - Zollinger, Tulipan A1 - Brasa, Sarah A1 - Kalteis, Magdalena A1 - Marcellin, Magali A1 - Giudicelli, Fanny A1 - Braeuning, Albert A1 - Morawiec, Laurent A1 - Zamurovic, Natasa A1 - Längle, Ulrich A1 - Scheer, Nico A1 - Schübeler, Dirk A1 - Goodman, Jay A1 - Chibout, Salah-Dine A1 - Marlowe, Jennifer A1 - Theil, Dietlinde A1 - Heard, David J. A1 - Grenet, Olivier A1 - Zell, Andreas A1 - Templin, Markus F. A1 - Meehan, Richard R. A1 - Wolf, Roland C. A1 - Elcombe, Clifford R. A1 - Schwarz, Michael A1 - Moulin, Pierre A1 - Terranova, Rémi A1 - Moggs, Jonathan G. T1 - Identification of Dlk1-Dio3 imprinted gene cluster non-coding RNAs as novel candidate biomarkers for liver tumor promotion JF - Toxicological Sciences N2 - The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, sug- gesting a role for β-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and β-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds. Y1 - 2012 U6 - https://doi.org/10.1093/toxsci/kfs303 SN - 1094-2025 VL - 131 IS - 2 SP - 375 EP - 386 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Scheer, Nico A1 - Balimane, Praveen A1 - Hayward, Michael D. A1 - Buechel, Sandra A1 - Kauselmann, Gunther A1 - Wolf, C. Roland T1 - Generation and Characterization of a Novel Multidrug Resistance Protein 2 Humanized Mouse Line JF - Drug Metabolism and Disposition N2 - The multidrug resistance protein (MRP) 2 is predominantly expressed in liver, intestine, and kidney, where it plays an important role in the excretion of a range of drugs and their metabolites or endogenous compounds into bile, feces, and urine. Mrp knockout [Mrp2(−/−)] mice have been used recently to study the role of MRP2 in drug disposition. Here, we describe the first generation and initial characterization of a mouse line humanized for MRP2 (huMRP2), which is nulled for the mouse Mrp2 gene and expresses the human transporter in the organs and cell types where MRP2 is normally expressed. Analysis of the mRNA expression for selected cytochrome P450 and transporter genes revealed no major changes in huMRP2 mice compared with wild-type controls. We show that human MRP2 is able to compensate functionally for the loss of the mouse transporter as demonstrated by comparable bilirubin levels in the humanized mice and wild-type controls, in contrast to the hyperbilirubinemia phenotype that is observed in MRP2(−/−) mice. The huMRP2 mouse provides a model to study the role of the human transporter in drug disposition and in assessing the in vivo consequences of inhibiting this transporter by compounds interacting with human MRP2. Y1 - 2012 U6 - https://doi.org/10.1124/dmd.112.047605 SN - 1521-0111 VL - 40 IS - 11 SP - 2212 EP - 2218 PB - ASPET CY - Bethesda, Md. ER - TY - JOUR A1 - Aggarwal, Pranav A1 - Dhiman, Shashi K. A1 - Kumar, G. A1 - Scherer, Ulrich W. A1 - Singla, M. L. A1 - Srivastava, Alok T1 - Optical study of poly(ethyleneterephthalate) modified by different ionizing radiation dose JF - Indian Journal of Pure and Applied Physics N2 - Thin films of poly(ethyleneterephthalate) [PET]were exposed to radiation dose ranging from 10 to 30 kGy by using gamma rays in the range 12.8-177.8 MGy using swift light ions of hydrogen. There was no effect of the radiation dose on the optical behaviour of PET as a result of exposure to radiation dose up to 30 kGy brought about by gamma rays but a significant decrease in the optical band gap values was observed when PET was exposed to swift light ions of hydrogen. The data obtained are discussed in terms of optical studies carried out on PET using swift heavy ions. Y1 - 2012 SN - 0019-5596 VL - 50 IS - 2 SP - 129 EP - 132 ER - TY - JOUR A1 - Scheer, Nico A1 - Kapelyukh, Yury A1 - Rode, Anja A1 - Buechel, Sandra A1 - Wolf, C. Roland T1 - Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines JF - Molecular Pharmacology N2 - Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C cluster CYP2C9 is of particular importance, because it is one of the most abundant P450 enzymes in human liver, and it is involved in the metabolism of a wide variety of important drugs and environmental chemicals. To investigate the in vivo functions of cytochrome P450 Cyp2c genes and to establish a model for studying the functions of CYP2C9 in vivo, we have generated a mouse model with a deletion of the murine Cyp2c gene cluster and a corresponding humanized model expressing CYP2C9 specifically in the liver. Despite the high number of functional genes in the mouse Cyp2c cluster and the reported roles of some of these proteins in different biological processes, mice deleted for Cyp2c genes were viable and fertile but showed certain phenotypic alterations in the liver. The expression of CYP2C9 in the liver also resulted in viable animals active in the metabolism and disposition of a number of CYP2C9 substrates. These mouse lines provide a powerful tool for studying the role of Cyp2c genes and of CYP2C9 in particular in drug disposition and as a factor in drug-drug interaction. Y1 - 2012 U6 - https://doi.org/10.1124/mol.112.080036 SN - 1521-0111 VL - 82 IS - 6 SP - 1022 EP - 1029 PB - ASPET CY - Bethesda, Md. ER -