TY - CHAP A1 - Fissabre, Anke A1 - Wilson, Ariane ED - Feiglstorfer, Hubert T1 - "Lehmbaupropaganda" : On the tradition of earth building literature T2 - Earth Construction and Tradition. Vol. I Y1 - 2016 SN - 978-3-900265-34-2 SP - 47 EP - 69 PB - IVA Institut für vergleichende Architekturforschung CY - Wien ER - TY - JOUR A1 - Hamad, E. M. A1 - Bilatto, S. E. R. A1 - Adly, N. Y. A1 - Correa, D. S. A1 - Wolfrum, B. A1 - Schöning, Michael Josef A1 - Offenhäusser, A. A1 - Yakushenko, A. T1 - Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices JF - Lab on a Chip N2 - Bonding of polymer-based microfluidics to polymer substrates still poses a challenge for Lab-On-a-Chip applications. Especially, when sensing elements are incorporated, patterned deposition of adhesives with curing at ambient conditions is required. Here, we demonstrate a fabrication method for fully printed microfluidic systems with sensing elements using inkjet and stereolithographic 3D-printing. Y1 - 2016 U6 - https://doi.org/10.1039/C5LC01195G SN - 1473-0189 VL - 16 IS - 1 SP - 70 EP - 74 PB - Royal Society of Chemistry CY - Cambridge ER - TY - CHAP A1 - Nakagawa, Masaki A1 - Kallweit, Stephan A1 - Michaux, Frank A1 - Hojo, Teppei T1 - Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry T2 - SAE International Journal of Passenger Cars - Mechanical Systems Y1 - 2016 U6 - https://doi.org/10.4271/2016-01-1611 SN - 1946-4002 ER - TY - JOUR A1 - Bayon, Arnau A1 - Valero, Daniel A1 - Garcia-Bartual, Rafael A1 - Vallés-Morán, Francisco José A1 - López-Jiménez, P. Amparo T1 - Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump JF - Environmental Modelling & Software N2 - A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers. Y1 - 2016 SN - 1364-8152 U6 - https://doi.org/10.1016/j.envsoft.2016.02.018 VL - 80 SP - 322 EP - 335 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, Shahriar A1 - Takenaga, Shoko A1 - Wagner, Patrick A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Determination of the extracellular acidification of Escherichia coli K12 with a multi-​chamber-​based LAPS system JF - Physica status solidi (a) N2 - On-line monitoring of the metabolic activity of microorganisms involved in intermediate stages of biogas production plays an important role to avoid undesirable “down times” during the biogas production. In order to control this process, an on-chip differential measuring system based on the light-addressable potentiometric sensor (LAPS) principle combined with a 3D-printed multi-chamber structure has been realized. As a test microorganism, Escherichia coli K12 (E. coli K12) were used for cell-based measurements. Multi-chamber structures were developed to determine the metabolic activity of E. coli K12 in suspension for a different number of cells, responding to the addition of a constant or variable amount of glucose concentrations, enabling differential and simultaneous measurements. Y1 - 2016 U6 - https://doi.org/10.1002/pssa.201533043 SN - 1862-6300 VL - 213 IS - 6 SP - 1479 EP - 1485 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Schreiber, Marc A1 - Kraft, Bodo A1 - Zündorf, Albert T1 - Cost-efficient quality assurance of natural language processing tools through continuous monitoring with continuous integration T2 - 3rd International Workshop on Software Engineering Research and Industrial Practice Y1 - 2016 U6 - https://doi.org/10.1145/2897022.2897029 N1 - SER&IP’16, May 17 2016, Austin, TX, USA SP - 46 EP - 52 ER - TY - CHAP A1 - Hüning, Felix T1 - Power Semiconductors for the automotive 48V board net T2 - PCIM Europe 2016 Conference Proceedings Y1 - 2016 SN - 978-3-8007-4186-1 SP - 1963 EP - 1969 PB - VDE Verl. CY - Berlin ER - TY - JOUR A1 - Breuer, Lars A1 - Raue, Markus A1 - Strobel, M. A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, R. A1 - Wagner, Torsten T1 - Hydrogels with incorporated graphene oxide as light-addressable actuator materials for cell culture environments in lab-on-chip systems JF - Physica status solidi (a) N2 - Abstractauthoren Graphene oxide (GO) nanoparticles were incorporated in temperature-sensitive Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels. The nanoparticles increase the light absorption and convert light energy into heat efficiently. Thus, the hydrogels with GO can be stimulated spatially resolved by illumination as it was demonstrated by IR thermography. The temporal progression of the temperature maximum was detected for different concentrations of GO within the polymer network. Furthermore, the compatibility of PNIPAAm hydrogels with GO and cell cultures was investigated. For this purpose, culture medium was incubated with hydrogels containing GO and the viability and morphology of chinese hamster ovary (CHO) cells was examined after several days of culturing in presence of this medium. Y1 - 2016 U6 - https://doi.org/10.1002/pssa.201533056 SN - 1862-6300 VL - 213 IS - 6 SP - 1520 EP - 1525 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pookhalil, Ali A1 - Amoabediny, Ghassem A1 - Tabesh, Hadi A1 - Behbahani, Mehdi A1 - Mottaghy, Khosrow T1 - A new approach for semiempirical modeling of mechanical blood trauma JF - The international journal of artificial organs N2 - Purpose Two semi-empirical models were recently published, both making use of existing literature data, but each taking into account different physical phenomena that trigger hemolysis. In the first model, hemoglobin (Hb) release is described as a permeation procedure across the membrane, assuming a shear stress-dependent process (sublethal model). The second model only accounts for hemoglobin release that is caused by cell membrane breakdown, which occurs when red blood cells (RBC) undergo mechanically induced shearing for a period longer than the threshold time (nonuniform threshold model). In this paper, we introduce a model that considers the hemolysis generated by both these possible phenomena. Methods Since hemolysis can possibly be caused by permeation of hemoglobin through the RBC functional membrane as well as by release of hemoglobin from RBC membrane breakdown, our proposed model combines both these models. An experimental setup consisting of a Couette device was utilized for validation of our proposed model. Results A comparison is presented between the damage index (DI) predicted by the proposed model vs. the sublethal model vs. the nonthreshold model and experimental datasets. This comparison covers a wide range of shear stress for both human and porcine blood. An appropriate agreement between the measured DI and the DI predicted by the present model was obtained. Conclusions The semiempirical hemolysis model introduced in this paper aims for significantly enhanced conformity with experimental data. Two phenomenological outcomes become possible with the proposed approach: an estimation of the average time after which cell membrane breakdown occurs under the applied conditions, and a prediction of the ratio between the phenomena involved in hemolysis. Y1 - 2016 U6 - https://doi.org/10.5301/ijao.5000474 SN - 1724-6040 VL - 39 IS - 4 SP - 171 EP - 177 PB - Sage CY - London ER - TY - BOOK A1 - Gebhardt, Andreas A1 - Hötter, Jan-Steffen T1 - Additive manufacturing : 3D printing for prototyping and manufacturing Y1 - 2016 SN - 978-1-56990-582-1 ; 978-1-56990-583-8 PB - Hanser Publishers CY - Munich ER -